Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1111 results about "Complex system" patented technology

A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, social and economic organizations (like cities), an ecosystem, a living cell, and ultimately the entire universe.

Network models of complex systems

InactiveUS20050171746A1Simulator controlData visualisationComplex dynamic systemsNetwork model
This invention describes computer based virtual models of complex systems, together with integrated systems and methods providing a development and execution framework for visual modeling and dynamic simulation of said models. The virtual models can be used for analysis, monitoring, or control of the operation of the complex systems modeled, as well as for information retrieval. More particularly, the virtual models in the present implementation relate to biological complex systems. In the current implementation the virtual models comprise building blocks representing physical, chemical, or biological processes, the pools of entities that participate in those processes, a hierarchy of compartments representing time-intervals or the spatial and/or functional structure of the complex system in which said entities are located and said processes take place, and the description of the composition of those entities. The building blocks encapsulate in different layers the information, data, and mathematical models that characterize and define each virtual model, and a plurality of methods is associated with their components. The models are built by linking instances of the building blocks in a predefined way, which, when integrated by the methods provided in this invention, result in multidimensional networks of pathways. A number of functions and graphical interfaces can be selected for said instances of building blocks, to extract in various forms the information contained in said models. Those functions include: a) on-the-fly creation of displays of interactive multidimensional networks of pathways, according to user selections; b) dynamic quantitative simulations of selected networks; and c) complex predefined queries based on the relative position of pools of entities in the pathways, the role that the pools play in different processes, the location in selected compartments, and/or the structural components of the entities of those pools. The system integrates inferential control with quantitative and scaled simulation methods, and provides a variety of alternatives to deal with complex dynamic systems and with incomplete and constantly evolving information and data.
Owner:INTERTECH VENTURES

Asset tracking within and across enterprise boundaries

A unique data label is affixed to each tracked asset and a unique data label for each location in the enterprise, both real and virtual locations. Location history data of the asset is related to other asset data in a relational data base. Assets typically include system components down to the least repairable/replaceable unit (LRU). The data label, in the preferred embodiment of the invention, is a code label using a code that ensures each label is unique to the asset or location to which it is attached. Here the word location is an inclusive term. It includes the geographical location and the identity of the building in which the asset is housed. Location also includes the identity of the system of which a component is a part and, if relevant, location within the system. It includes also any real or virtual location of interest for subsequent analysis and is ultimately defined by the nature of the system being tracked.People assigned to install, upgrade, maintain, and do other work on the system are identified and this identifying data is entered into the data base along with each activity performed on the system and its components. Preferably, in response to a scanned asset label, a menu of allowable activities is presented so that the person assigned to do a task associated with the asset can easily make entries into the data base of the code assigned to the task performed. With asset data, asset location, and task record (including the person performing the task), entered into the relational data base, it is relatively easy to track the components of complex systems in a large enterprise over time and build complex relational records.
Owner:RATEZE REMOTE MGMT LLC +1

System, method, and computer-accessible medium for providing a multi-objective evolutionary optimization of agent-based models

Agent-based models (ABMs)/multi-agent systems (MASs) are one of the most widely used modeling-simulation-analysis approaches for understanding the dynamical behavior of complex systems. These models can be often characterized by several parameters with nonlinear interactions which together determine the global system dynamics, usually measured by different conflicting criteria. One problem that can emerge is that of tuning the controllable system parameters at the local level, in order to reach some desirable global behavior. According to one exemplary embodiment t of the present invention, the tuning of an ABM for emergency response planning can be cast as a multi-objective optimization problem (MOOP). Further, the use of multi-objective evolutionary algorithms (MOEAs) and procedures for exploration and optimization of the resultant search space can be utilized. It is possible to employ conventional MOEAs, e.g., the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Pareto Archived Evolution Strategy (PAES), and their performance can be tested for different pairs of objectives for plan evaluation. In the experimental results, the approximate Pareto front of the non-dominated solutions is effectively obtained. Further, a conflict between the proposed objectives can be seen. Additional robustness analysis may be performed to assist policy-makers in selecting a plan according to higher-level information or criteria which is likely not present in the original problem description.
Owner:NEW YORK UNIV

Fault diagnosis method for rolling bearing based on deep learning and SVM (Support Vector Machine)

InactiveCN104616033ASave human effortSolve the problem of local optimum solutionCharacter and pattern recognitionAviationDeep belief network
The invention provides a fault diagnosis method for a rolling bearing based on a deep learning and SVM (Support Vector Machine). The method comprises using a manure learning algorithm in a deep belief network theory to complete a characteristic extraction task needed by fault diagnosis; automatically extracting the substantive characteristics of data input independent of manual selection from simple to complicate, from low to high, and automatically digging abundant information concealed in known data; in addition, classifying and identifying a test sample by adopting an SVM classification method, seeking and finding a global minimum of a target function through an effective method previously designed, so as to solve the problem that a deep belief network may be trapped into a locally optimal solution. According to the fault diagnosis method for the rolling bearing based on the deep learning and SVM provided by the invention, the accuracy and effectiveness of the fault diagnosis method for a rolling bearing can be improved, and a new effective way can be provided to solve the accuracy and effectiveness of the fault diagnosis method, therefore the fault diagnosis method can be extensively applied complex systems in chemistry, metallurgy, electric power, aviation fields and the like.
Owner:CHONGQING UNIV

Advanced real-time grid monitoring system and method

This invention deals with an advanced Real-time Grid Monitoring System (RTGMS) suitable for both single-phase and three-phase electric power systems. This invention provides an essential signal processing block to be used as a part of complex systems either focused on supervising and diagnosing power systems or devoted to control power processors interacting with the grid. This invention is based on a new algorithm very suitable for real-time characterization of the grid variables under distorted and unbalanced grid conditions. The main characteristic of this invention is the usage of a frequency-locked loop, based on detecting the grid frequency, for synchronizing to the grid variables. It results in a very robust system response in relation to existing technique based on the phase-angle detection since grid frequency is much more stable variable than the grid voltage/current phase-angle, mainly during grid faults. Moreover, the algorithm supporting this invention is very efficient and can be implemented in regular industrial microprocessors. These features make the RTGMS object of this invention ideal to be applied in the control of distributed generation systems (DGS), flexible AC transmission systems (FACTS), power quality conditioners (PQC) and uninterruptible power supplies (UPS). In all these systems, the fast and precise real time detection of the voltage and/or current sequence components under grid fault conditions is a crucial matter.
Owner:GAMESA INNOVATION & TECH SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products