Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1110 results about "Process variable" patented technology

A process variable, process value or process parameter is the current measured value of a particular part of a process which is being monitored or controlled. An example of this would be the temperature of a furnace. The current temperature is called the process variable, while the desired temperature is known as the set-point. The set point is usually abbreviated to SP, and the process value is usually abbreviated to PV.

Decentralized industrial process simulation system

ActiveUS20110131017A1Accurately solves massAccurately flow balanceProgramme controlAnalogue computers for control systemsMass storageParallel computing
A high fidelity distributed plant simulation technique includes a plurality of separate simulation modules that may be stored and executed separately in different drops or computing devices. The simulation modules communicate directly with one another to perform accurate simulation of a plant, without requiring a centralized coordinator to coordinate the operation of the simulation system. In particular, numerous simulation modules are created, with each simulation module including a model of an associated plant element and these simulation modules are stored in different drops of a computer network to perform distributed simulation of a plant or a portion of a plant. At least some of the simulation modules, when executing, perform mass flow balances taking into account process variables associated with adjacent simulation modules to thereby assure pressure, temperature and flow balancing (i.e., conservation of mass flow) through the entire simulation system. In a dynamic situation, a transient mass storage relay technique is used to account for transient changes in mass flow through any non-storage devices being simulated by the simulation modules. Moreover, adjacent simulation modules located in different drops communicate directly with one another using a background processing task, which simplifies communications between adjacent simulation modules without the need for a central coordinator.
Owner:EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS

Artificial neural network and fuzzy logic based boiler tube leak detection systems

Power industry boiler tube failures are a major cause of utility forced outages in the United States, with approximately 41,000 tube failures occurring every year at a cost of $5 billion a year. Accordingly, early tube leak detection and isolation is highly desirable. Early detection allows scheduling of a repair rather than suffering a forced outage, and significantly increases the chance of preventing damage to adjacent tubes. The instant detection scheme starts with identification of boiler tube leak process variables which are divided into universal sensitive variables, local leak sensitive variables, group leak sensitive variables, and subgroup leak sensitive variables, and which may be automatically be obtained using a data driven approach and a leak sensitivity function. One embodiment uses artificial neural networks (ANN) to learn the map between appropriate leak sensitive variables and the leak behavior. The second design philosophy integrates ANNs with approximate reasoning using fuzzy logic and fuzzy sets. In the second design, ANNs are used for learning, while approximate reasoning and inference engines are used for decision making. Advantages include use of already monitored process variables, no additional hardware and / or maintenance requirements, systematic processing does not require an expert system and / or a skilled operator, and the systems are portable and can be easily tailored for use on a variety of different boilers.
Owner:TENNESSEE VALLEY AUTHORITY +1

Computer System And Method For Causality Analysis Using Hybrid First-Principles And Inferential Model

The present invention is directed to computer-based methods and system to perform root-cause analysis on an industrial process. The methods and system load process data for an industrial process from a historian database and build a hybrid first-principles and inferential model. The methods and system then executes the hybrid model to generate KPIs for the industrial process using the loaded process variables. The methods and system then selects a subset of the KPIs to represent an event occurring in the industrial process, and divides the data for the subset into multiple subset of time series. The system and methods select time intervals from the time series based on the data variability in the selected time intervals and perform a cross-correlation between the loaded process variables and the selected time interval, resulting in a cross-correlation score for each loaded process variable. The methods and system then select precursor candidates from the loaded process variables based on the cross-correlation scores and execute a parametric model for performing quantitative analysis of the selected precursor candidates, resulting in a strength of correlation score for each precursor candidate. The methods and system select root-cause variables from the selected precursor candidates based on the strength of correlation scores for analyzing the root-cause of the event.
Owner:ASPENTECH CORP

Pulsed radar level gauging with relative phase detection

A method for determining a process variable of a product in a tank based on a time delay of electromagnetic waves. The method further comprises forming a measurement signal comprising a sequence of values, each value representing a time correlation between a pulse of a reference signal and a reflected signal, sampling and digitizing this measurement signal to form a digital signal, identifying a time window of the digital signal including the surface echo peak, determining a relative time period between a reference time corresponding to the predefined reference and a beginning of the time window, time-to-frequency transforming the digital signal in the time window to obtain a phase spectrum, determining a relative phase shift of the spectrum and using the relative phase shift to calculate a corresponding time shift, and determining the time delay by adding the relative time period and the time shift.The invention is based on the realization that major improvement of measurement performance, compared to amplitude detection only, can be achieved by discrimination of the phase difference between the reflected signal and a reference. The detection is further independent of the pulse waveform and modulation, significantly reducing the requirements on pulse modulation.
Owner:ROSEMOUNT TANK RADAR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products