Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1826 results about "Model predictive control" patented technology

Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s. In recent years it has also been used in power system balancing models and in power electronics. Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification. The main advantage of MPC is the fact that it allows the current timeslot to be optimized, while keeping future timeslots in account. This is achieved by optimizing a finite time-horizon, but only implementing the current timeslot and then optimizing again, repeatedly, thus differing from Linear-Quadratic Regulator (LQR). Also MPC has the ability to anticipate future events and can take control actions accordingly. PID controllers do not have this predictive ability. MPC is nearly universally implemented as a digital control, although there is research into achieving faster response times with specially designed analog circuitry.

Model prediction control method and model prediction control system for all working conditions of wind generating set

Disclosed are a model prediction control method and a model prediction control system for all working conditions of a wind generating set. The system comprises an MPC (model prediction control) device, a feedback information measurer, a wind wheel, a driving chain, a tower, a generating unit, a variable propeller driver and a converter. The feedback information measurer is used for detecting status variables of the wind wheel, the driving chain, the tower and the generating unit and transmitting detecting results to the MPC device, the MPC device is used for computing targets of the blade pitch angle and the generator torque, and the variable propeller driver and the converter are used for adjusting the blade pitch angle and the wind generator torque. The method is used for computing control increment by means of a variable propeller control prediction model and a torque control prediction model, takes the status variables including driving chain torsional displacement, driving chain torsional speed, blade plane external first-order flap displacement, blade plane external first-order flap speed, tower front-back first-order swing displacement, tower front-back first-order swing speed, mechanical loads of the unit and the like, and two prediction models can be automatically switched in different working conditions, so that the wind generating set can be operated in all working conditions.
Owner:SHENYANG HUAREN WIND POWER TECH

Horizontal and vertical coordination control method for trajectory tracking of intelligent vehicle

InactiveCN108248605AImprove lateral stabilityRealize longitudinal speed tracking controlControl devicesControl systemModel predictive control
The invention relates to a horizontal and vertical coordination control method for trajectory tracking of an intelligent vehicle. For association and coupling characteristics of horizontal and vertical dynamics of the intelligent vehicle, a horizontal and vertical coordination controller for trajectory tracking of the intelligent vehicle is designed. By applying a model prediction control and sliding mode control algorithm, the opening degree of a throttle valve of an engine, the pressure of a main braking cylinder and the deflection angle of a front wheel are cooperatively controlled. In thedesign of a horizontal MPC, the state amount of the vehicle is selected at the formula which is shown in the description, and the state amount (vertical speed vx) is real-time changable vehicle speedoutput by the vehicle after vertical control; vy is a horizontal speed at the mass center of the vehicle; the formulas which are shown in the description are the heading angle and heading angle speedat the mass center of the vehicle; Y and X are a horizontal position and a vertical position under world coordinates. According to a horizontal and vertical coordination control system, the intelligent vehicle efficiently and stably tracks an expectation trajectory at the expected speed. Large-steering operation can be remarkably improved, and the horizontal stability of the intelligent vehicle inthe trajectory tracking process is improved.
Owner:CHONGQING UNIV OF POSTS & TELECOMM

Intelligent electric vehicle path tracking model prediction control method

ActiveCN109795502AImprove path tracing performanceImprove mechanical propertiesModel predictive controlElectric vehicle
The invention relates to an intelligent electric vehicle path tracking model prediction control method, belonging to the technical field of control. The aim of the invention is to adopt the intelligent electric vehicle path tracking model prediction control method, wherein the model prediction control method can take account of the safety constraints of a whole vehicle simultaneously and realizeseclectic optimization among vehicle path tracking performance, safety and whole vehicle performance effectively. The method gives thought to intelligent electric vehicle path tracking model building in limited conditions and yaw stabilization controller design based on model prediction control as well as the tracking performance of the vehicle, the safety of the vehicle, the whole vehicle performance, driving comfort and saving and control of energy in the process of carrying out control strategy deduction, and improves the dynamic performance of the whole vehicle. The method gives thought tothe tracking performance of the vehicle (path following and speed following), the safety of the vehicle (preventing slipping, locking, sideward inclining or drifting), the whole vehicle performance (accelerating and braking performance), driving comfort (the change of torque cannot be too great) and saving and control of energy (saving energy on the premise of meeting the performance). The dynamicperformance of the whole vehicle is improved.
Owner:JILIN UNIV

Model prediction control-based active and reactive coordinated control method of power distribution network

The invention discloses a model prediction control-based active and reactive coordinated control method of a power distribution network. The method comprises the steps of (1) building a recent optimization and control model according to an optimization object and constraint conditions; (2) solving the recent optimization and control model and making a recent active and reactive control plant of the power distribution network; (3) taking a recent active and reactive control plan of the power distribution network as a reference value, considering current and future running constraint conditions on the basis of a running state measurement value of the power distribution network at a current moment, building a prediction model and an active and reactive coordinated optimization and control model at an intra-day rolling correction stage by and solving an intra-day active and reactive control instruction sequence in a limited period in the future; and (4) executing an intra-day active and reactive control instruction at a first moment, moving a time window backwards at a time interval and repeating the intra-day rolling correction optimization process. According to the method, the running cost of a system is reduced on the premise of ensuring the running security of the system, the network loss of the system is reduced, and maximization of the running benefit of the active power distribution network is achieved.
Owner:JIANGSU ELECTRIC POWER CO +2

Automotive adaptive cruise control method taking multiple targets into consideration

The invention discloses an automotive adaptive cruise control method taking multiple targets into consideration. A layer control strategy is utilized, upper layer control can decide an expected longitudinal acceleration according to a target vehicle and a current state of a controlled vehicle, and lower layer control can track the expected longitudinal acceleration through a reverse recursion method. The automotive adaptive cruise control method comprises the following steps: a mutual longitudinal dynamitic model between two vehicles is established, a design model predicating controller can obtain the expected distance between two vehicles according to a constant time headway strategy, a model prediction control algorithm is utilized to decide an expected longitudinal acceleration for tracking the expected distance between the two vehicles, vehicle control work conditions are divided into a driving work condition and a braking work condition, reverse longitudinal dynamic models for the two work conditions are established respectively according to a vehicle driving equation, an expected throttle percentage is obtained according to the vehicle reverse longitudinal dynamic model and the expected acceleration in the driving work condition, and an expected brake pedal openness is obtained according to the expected acceleration in the braking work condition.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products