Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5439 results about "Band width" patented technology

Bandwidth is a term used to describe how much information can be transmitted over a connection. It is usually given as bits per second, or as some larger denomination of bits, such as Megabits per second, expressed as kbit/s or Mbit/s. Bandwidth is a gross measurement, taking the total amount of data transferred in...

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

System for bandwidth extension of Narrow-band speech

A system and method are disclosed for extending the bandwidth of a narrowband signal such as a speech signal. The method applies a parametric approach to bandwidth extension but does not require training. The parametric representation relates to a discrete acoustic tube model (DATM). The method comprises computing narrowband linear predictive coefficients (LPCs) from a received narrowband speech signal, computing narrowband partial correlation coefficients (parcors) using recursion, computing Mnb area coefficients from the partial correlation coefficient, and extracting Mwb area coefficients using interpolation. Wideband parcors are computed from the Mwb area coefficients and wideband LPCs are computed from the wideband parcors. The method further comprises synthesizing a wideband signal using the wideband LPCs and a wideband excitation signal, highpass filtering the synthesized wideband signal to produce a highband signal, and combining the highband signal with the original narrowband signal to generate a wideband signal. In a preferred variation of the invention, the Mnb area coefficients are converted to log-area coefficients for the purpose of extracting, through shifted-interpolation, Mwb log-area coefficients. The Mwb log-area coefficients are then converted to Mwb area coefficients before generating the wideband parcors.
Owner:CERENCE OPERATING CO

Methods and Devices for Low-Frequency Emphasis During Audio Compression Based on Acelp/Tcx

A first aspect of the present invention relates to a method for low-frequency emphasizing the spectrum of a sound signal transformed in a frequency domain and comprising transform coefficients grouped in a number of blocks, in which a maximum energy for one block is calculated and a position index of the block with maximum energy is determined, a factor is calculated for each block having a position index smaller than the position index of the block with maximum energy the calculated maximum energy and the energy of the block, and, for each block, a gain determining from the factor is applied to the transform coefficients of the block. Another aspect of the invention is concerned with an HF coding method for coding, through a bandwidth extension scheme, an HF signal obtained from separation of a full-bandwidth sound signal into the HF signal and a LF signal, in which an estimation of the an HF gain is calculated from LPC coefficients, the energy of the HF signal is calculated, the LF signal is processed to produce a synthesized version of the HF signal, the energy of the synthesized version of the HF signal is calculated, a ratio between the energy of the HF signal and the energy of the synthesized version of the HF signal is calculated and expressing as an HF gain, and a difference between the estimation of the HF gain and the HF gain is calculated to obtain a gain correction. A third aspect of the invention is concerned with a method for producing from a decoded target signal an overlap-add target signal in a current frame coded according to a first coding mode. According to this method, the decoded target signal of the current frame is windowed and a left portion of the window is skipped. A zero-input response of a weighting filter of the previous frame coded according to a second coding mode is calculated and windowed so that the zero-input response has an amplitude monotonically decreasing to zero after a predetermined time period. Finally, the calculated zero-input response is added to the decoded target signal to reconstruct the overlap-add target signal.
Owner:VOICEAGE CORP

Methods and devices for low-frequency emphasis during audio compression based on ACELP/TCX

A first aspect of the present invention relates to a method for low-frequency emphasizing the spectrum of a sound signal transformed in a frequency domain and comprising transform coefficients grouped in a number of blocks, in which a maximum energy for one block is calculated and a position index of the block with maximum energy is determined, a factor is calculated for each block having a position index smaller than the position index of the block with maximum energy the calculated maximum energy and the energy of the block, and, for each block, a gain determining from the factor is applied to the transform coefficients of the block. Another aspect of the invention is concerned with an HF coding method for coding, through a bandwidth extension scheme, an HF signal obtained from separation of a full-bandwidth sound signal into the HF signal and a LF signal, in which an estimation of the an HF gain is calculated from LPC coefficients, the energy of the HF signal is calculated, the LF signal is processed to produce a synthesized version of the HF signal, the energy of the synthesized version of the HF signal is calculated, a ratio between the energy of the HF signal and the energy of the synthesized version of the HF signal is calculated and expressing as an HF gain, and a difference between the estimation of the HF gain and the HF gain is calculated to obtain a gain correction. A third aspect of the invention is concerned with a method for producing from a decoded target signal an overlap-add target signal in a current frame coded according to a first coding mode. According to this method, the decoded target signal of the current frame is windowed and a left portion of the window is skipped. A zero-input response of a weighting filter of the previous frame coded according to a second coding mode is calculated and windowed so that the zero-input response has an amplitude monotonically decreasing to zero after a predetermined time period. Finally, the calculated zero-input response is added to the decoded target signal to reconstruct the overlap-add target signal.
Owner:VOICEAGE CORP

Arbitrary waveform generator having programmably configurable architecture

An arbitrary waveform generator (AWG) for producing an analog output current signal includes a random access memory (RAM), a programmable logic device (PLD), a programmable pattern generator, several digital-to analog converters (DACS) and a current multiplexer. The RAM store data sequences representing the analog waveform to be generated. The pattern generator read addresses the RAM causing it to sequentially read out its stored data sequence to the PLD. The PLD routes selected fields of each data sequence word to one or more of the DACs in response to timing signals provided by the pattern generator. Each DAC produces an output current of magnitude determined by its input waveform and range data. The pattern generator also signals the analog multiplexer to sum currents produced by one or more selected DACs to produce the AWG output waveform. The nature of the AWG output waveform is flexibly determined by the nature of the data sequence and the frequency at which it is read out of the RAM, the manner in which the PLD routes the data sequence to the DACs, the value of the range data supplied to each DAC, and the output pattern generated by the pattern generator. The flexible AWG architecture permits the AWG to be appropriately configured for various combinations of output waveform frequency, bandwidth and resolution requirements.
Owner:CREDENCE SYSTEMS

Method and mobile station to perform the initial cell search in time slotted systems

A method is disclosed that a Mobile Station MS performs at switch-on to search the most favorable target cell in UMTS systems like the 3GPP CDMA—LCR (Low Chip Rate) option at 1.28 Mcps—TDD (Time Division Duplex) mode and the equivalent TD-SCDMA (Time Division—Synchronous CDMA). Signal at the MS antenna is the sum of different RF downlink frames coming from different carriers in the assigned frequency ranges. A DL synchronization timeslot and a BCCH TS0 are both transmitted with full power in the frames, the first one includes one out of 32 SYNC codes assigned on cell basis. Following a conventional approach the absence of a common downlink pilot and without prior knowledge of the used frequencies would force the MS, for all the frequencies of the channel raster stored in the SIM card, the correlation of the received frame with all the 32 SYNCs stored in the MS, in order to detect the BSIC of a cell to which associate the power measures. Following the two-step method of the invention the power measures are performed in two-step scan of the PLMN band without interleaved correlation steps; once a final frequency is selected the respective frame is the only correlated one. At least one frame duration about 5 ms long of the whole 15 MHz bandwidth is acquired, IF converted, A/D converted and the digital set is stored. A rough scan is performed multiplying the digital set by a digital IF tuned in steps wide as the channel band (1.6 MHz) along the 15 MHz band, and filtering the baseband signal with a Root Raise Cosine low-pass filter. The 5 ms baseband signal is subdivided into 15 blocks of half timeslot (337.5 μs) and the power of each block is measured. The power of the strongest block indicates the priority of the respective frequency. The strongest power values are put in a Spectral Table together with respective frame load indicators. The load indicator is the percentage of timeslots in a frame almost equally loaded as the strongest block. The three strongest frequencies are selected for the successive scan. The second step search is performed like the first one but the IF steps are now 200 kHz wide and cover the only 1.6 MHz spectrum around a selected frequency. A final frequency is selected for the successive correlation step. Then the frequency error of the MS reference oscillator is corrected with data-aided techniques and a calibration value stored for successive connections (FIG. 9).
Owner:SIEMENS INFORMATION & COMM NEWTWORKS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products