Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

143 results about "Synchronous CDMA" patented technology

Synchronous CDMA (SCDMA) is one of the air interfaces of CDMA standards, it used the technology of TDMA to achieve the synchronization of the terminal's upload timeslot. SCDMA is the base of the UMTS-TDD LCR (Known as TDS-CDMA), and powerfully supported by the Chinese government. It's similar with the TDSCDMA of the special technology used, such as software radio and smart antenna. It belongs to the 2G (Second Generation Communication System).

Method and mobile station to perform the initial cell search in time slotted systems

A method is disclosed that a Mobile Station MS performs at switch-on to search the most favorable target cell in UMTS systems like the 3GPP CDMA—LCR (Low Chip Rate) option at 1.28 Mcps—TDD (Time Division Duplex) mode and the equivalent TD-SCDMA (Time Division—Synchronous CDMA). Signal at the MS antenna is the sum of different RF downlink frames coming from different carriers in the assigned frequency ranges. A DL synchronization timeslot and a BCCH TS0 are both transmitted with full power in the frames, the first one includes one out of 32 SYNC codes assigned on cell basis. Following a conventional approach the absence of a common downlink pilot and without prior knowledge of the used frequencies would force the MS, for all the frequencies of the channel raster stored in the SIM card, the correlation of the received frame with all the 32 SYNCs stored in the MS, in order to detect the BSIC of a cell to which associate the power measures. Following the two-step method of the invention the power measures are performed in two-step scan of the PLMN band without interleaved correlation steps; once a final frequency is selected the respective frame is the only correlated one. At least one frame duration about 5 ms long of the whole 15 MHz bandwidth is acquired, IF converted, A/D converted and the digital set is stored. A rough scan is performed multiplying the digital set by a digital IF tuned in steps wide as the channel band (1.6 MHz) along the 15 MHz band, and filtering the baseband signal with a Root Raise Cosine low-pass filter. The 5 ms baseband signal is subdivided into 15 blocks of half timeslot (337.5 μs) and the power of each block is measured. The power of the strongest block indicates the priority of the respective frequency. The strongest power values are put in a Spectral Table together with respective frame load indicators. The load indicator is the percentage of timeslots in a frame almost equally loaded as the strongest block. The three strongest frequencies are selected for the successive scan. The second step search is performed like the first one but the IF steps are now 200 kHz wide and cover the only 1.6 MHz spectrum around a selected frequency. A final frequency is selected for the successive correlation step. Then the frequency error of the MS reference oscillator is corrected with data-aided techniques and a calibration value stored for successive connections (FIG. 9).
Owner:SIEMENS INFORMATION & COMM NEWTWORKS INC

Use of wide element spacing to improve the flexibility of a circular base station antenna array in a space division/multiple access synchronous CDMA communication system

A method is disclosed for operating a synchronous space division multiple access, code division multiple access communications system, as is a system that operates in accordance with the method. The method operates, within a coverage area of a base station (BS), to assign the same spreading code to a plurality of subscriber stations (SSs) and to transmitting signals to, and receive signals from, the SSs using an antenna array having M elements, where M>1 and where the M elements are spaced apart by more than one-half wavelength from one another. The spacing is a function of a size of an aperture of the antenna array which is a function of a signal bandwidth to carrier frequency ratio. The antenna array aperture is preferably less than k=p/360*fc/B wavelengths, where p is a maximum acceptable phase variation over the signal bandwidth, where fc is the carrier frequency and where B is the signal bandwidth. The step of conducting communications includes steps of despreading a plurality of received signals; and beamforming the plurality of despread received signals. In a preferred embodiment individual ones of P orthogonal spreading codes are reused αM times within the coverage area, where 1/M<α≦1.
Owner:L3 TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products