Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7002 results about "Time synchronization" patented technology

Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks

Methods and apparatuses for synchronizing basestations in a cellular network. One exemplary method performs time synchronization between at least two basestations, a first basestation and a second basestation, of a cellular communication system. In this exemplary method, a first time-of-day and a first geographical location of a first mobile cellular receiver station (MS) are determined from a first satellite positioning system (SPS) receiver which is co-located with the first MS, and the first time-of-day and first location are transmitted by the first MS to a first basestation which determines a time-of-day of the first basestation from the first time-of-day and first location and from a known location of the first basestation. Also in this exemplary method, a second time-of-day and a second geographical location of a second MS are determined from a second SPS receiver which is co-located with the second MS, and the second time-of-day and the second location are transmitted to a second basestation which determines a time-of-day of the second basestation from the second time-of-day and the second location and a known location of the second basestation. Other methods and apparatuses are also described for synchronizing basestations in a cellular network.
Owner:SNAPTRACK

Method and apparatus for time synchronization in a communication system

A method and apparatus for time synchronization in a communications system such as a system including cable modems is provided. The synchronization method comprises the steps of receiving a first timestamp from a headend unit with the cable modem, and generating a first cable modem time reference with the cable modem in response to the receipt of the first timestamp. The cable modem then receives a second timestamp from the headend unit and generates a second cable modem time reference in response to the receipt of the second timestamp. A headend difference time comprising the difference of the first and second timestamps is then generated as is a cable modem difference time comprising the difference of the first and second cable modem time references. A clock error time that comprises the difference of the headend difference time and the cable modem difference time is then generated as well as a correction factor in response to the clock error time. The local clock of the cable modem is then synchronized with the master clock of the headend unit through the adjusting of the output of the local clock output in response to the correction factor. The correction factor in one instance comprises an offset value representative of the amount of clock error per local clock pulse. This offset value is added to an accumulator on each local clock pulse, and the local clock output is adjusted when the accumulator rolls over. The synchronized clock signal can then be utilized to determine a time slot in which the cable modem can transmit an upstream signal to the headend without colliding the upstream signal with upstream signals from other modems in the system.
Owner:HEWLETT PACKARD DEV CO LP

Video acquisition and compilation system and method of assembling and distributing a composite video

FIG. 7 shows a camera system (700) that operates to time-stamp video content captured from multiple cameras (740) relative to a recorded and time-synchronized location of a portable tracking unit (722). The position of the cameras (740) is known to the system. Based on the time and position data for each uniquely identifiable tracking unit, an editing suite (770) automatically compiles a composite video made up from time-spliced video segments from the various cameras. Video or still images captured by the cameras (740)are cross-referenced against the client address stored in database (760) and related to the assigned, uniquely identifiable tracking unit (722). A server (750) is arranged to use the client address to send reminder messages, which reminder messages may include selected images taken by the composite video. Alternatively, a client (720) can use the client address to access the database and view the composite video. In the event that the client (720) wants to receive a fair copy of the composite video, the server (750) is arranged to process the request and send the composite video to the client. Streaming of multiple video feeds from different cameras that each encode synchronized time allows cross-referencing of stored client-specific data and, ultimately, the assembly of the resultant composite video that reflects a timely succession of events having direct relevant to the client (720).
Owner:E PLATE

Thin film deposition via a spatially-coordinated and time-synchronized process

A deposition system and process for the formation of thin film materials. In one embodiment, the process includes forming an initial plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the initial plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The deposition system includes a deposition chamber having a plurality of delivery points for injecting two or more streams (source materials or carrier gases) into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma. Injection of different material streams is also synchronized in time. The net effect of spatial coordination and time synchronization of material streams is a plasma whose distribution of species is optimized for the deposition of a thin film photovoltaic material at high deposition rates. Delivery devices include nozzles and remote plasma sources.
Owner:OVSHINSKY TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products