Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

245 results about "Radio over fiber" patented technology

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.

Optical fiber radio transmission system, transmission device, and reception device

An optical fiber radio transmission system is provided which is capable of considerably improving the received dynamic range of radio signals and, in addition, is capable of optically transmitting radio signals while preventing the deterioration of transmission performance and the loss of linearity of an input signal more easily. A received level detection section 111 detects which one of predetermined levels, i.e., Level I, Level II, and Level III, the received level of a radio signal received by an antenna 400 falls under. A signal control section 112 performs an amplification/attenuation process on the radio signal in accordance with the detected level. A control information sending section 113 superimposes control information indicating the detected level on a primary signal obtained after the amplification/attenuation process. This signal is converted to an optical signal and transmitted. An optical to electrical conversion section 211 converts the optical signal received from a transmitting unit to an electrical signal. A control information extraction section 212 extracts the level from the control information, which has been superimposed on the primary signal. A signal control section 213 performs an amplification/attenuation process on the primary signal in accordance with the extracted level.
Owner:HASE KAZUTOSHI +2

Wireless terminal transceiver of 60GHz RoF (Radio over Fiber) access system

The invention discloses a wireless terminal transceiver of a 60GHz RoF (Radio over Fiber) access system. Secondary subharmonic frequency mixing is adopted, and the frequency of a needed local oscillation signal is reduced in a frequency multiplication frequency mixing way, so that the problem of leakage of the local oscillation signal to an antenna, i.e., a radiofrequency transmitting end in the conventional wireless terminal transceiver scheme is solved, and the circuit modulation performance is improved. Meanwhile, a downlink medium frequency analog signal obtained after secondary subharmonic down-conversion is subjected to downlink medium frequency digital signal processing after ADC (Analog to Digital Conversion) to obtain a needed downlink digital baseband signal; and an uplink digital baseband signal is subjected to uplink medium frequency digital signal processing to obtain an uplink medium frequency digital signal. A series of medium frequency digital signal processing such as odd-even extraction or interpolation, symbol modulation, delay filtering, demodulation or modulation and the like is performed in a digital domain, so that the problem of IQ orthogonal mismatch caused by 90-degree phase change on a local oscillation signal for obtaining two paths of analog signals in an analog frequency domain of the conventional receiver is solved.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Modulation and demodulation apparatuses and methods for wired/wireless communication system

Wired/wireless optical signal modulation and demodulation apparatuses and methods using an intensity modulation/direct detection method and an orthogonal frequency division multiplexing (OFDM) method are provided. A unipolar OFDM symbol frame is generated by determining the polarity of each of a plurality of sub-frames of a bipolar OFDM symbol frame which comprises both a plurality of positive pulses and a plurality of negative pulses, inverting the polarity of the sub-frames which are determined to be negative, delaying one of the positive sub-frame and a positive sub-frame obtained through the inversion by the duration of the sub-frames, and multiplexing the result of the delaying and whichever of the positive sub-frame and the positive sub-frame obtained through the inversion is not the result of the delaying. The unipolar OFDM symbol frame can guarantee high power amplification efficiency and high transmission power efficiency, and is robust against a multi-path channel environment. Therefore, the unipolar OFDM symbol frame can be used in various optical signal modulation/demodulation methods for wireless indoor broadband optical transmission devices, wired broadband optical transmission devices using multi-mode optical fibers, and radio-over-fiber devices which transmit baseband analog signals as optical signals.
Owner:ELECTRONICS & TELECOMM RES INST

Serial-parallel connection modulation optical frequency multiplication millimeter-wave RoF (Radio Over Fiber) system and QPSK (Quadrature Phase Shift Keying) /16QAM (Quadrature Amplitude Modulation) modulation method thereof

The invention relates to a serial-parallel connection modulation optical frequency multiplication millimeter-wave RoF (Radio Over Fiber) system and a QPSK (Quadrature Phase Shift Keying)/16QAM (Quadrature Amplitude Modulation) modulation method thereof. The system comprises a central station, a base station and fiber connection thereof, wherein the central station comprises a single longitudinal mode laser, a double-electrode Mach-Zehnder optical modulator, an IQ optical modulator, two microwave signal sources, a pi phase shifter, a pi/2 phase shifter and an erbium doped fiber amplifier; and the base station comprises an optical detector, a front low-noise amplifier, two millimeter-wave bandpass filters, two millimeter-wave amplifiers, a millimeter-wave duplexer and a millimeter-wave antenna. In the method, the cascading of the double-electrode Mach-Zehnder optical modulator and the IQ optical modulator is adopted, and a balanced optical waveguide structure formed by integrating the two optical modulators avoids the influence of optical source phase interference noise caused by support arm optical delay inequality on modulation signals.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products