Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1217results about "Equalisers" patented technology

Hybrid time-frequency domain equalization over broadband multi-input multi-output channels

A system and methodology for channel equalization are provided. According to one aspect, a receiver structure for a MIMO system is provided that employs frequency domain equalization (FDE) with noise prediction (FDE-NP). The FDE-NP structure may include a feedforward linear frequency domain equalizer and a group of time domain noise predictors (NPs), which may operate by predicting a distortion corresponding to a given linearly equalized data stream based on previous distortions of all linearly equalized data streams. According to another aspect, a receiver structure for a MIMO system is provided that employs FDE-NP with successive interference cancellation (FDE-NP-SIC), which can extend the functionality of FDE-NP by ordering all linearly equalized data streams according to their minimum mean square errors (MMSEs) and detecting those streams which have a low MMSE first, thereby allowing current decisions of lower-indexed streams to be considered along with previous decisions for all data streams for noise prediction. According to a third aspect, a method for analyzing the performance of a MIMO system with equalization is provided. Pursuant to the method, a general expression of MMSE may first be derived. The MMSE expression may then be related to an error bound by applying the modified Chernoff bounding methodology in a general MIMO system. The parameters in the result may then be varied for applicability to single-input single-output (SISO), multiple-input single-output (MISO), and single-input multiple-output (SIMO) systems with receiver equalization technology.
Owner:YIM TU INVESTMENTS

Log-polar signal processing

The invention relates to a method and an arrangement intended for radio communication systems and effective in digitalizing and subsequently processing numerically arbitrary radio signals. The signals are represented by composite (complex) vectors which have been subjected to disturbances in the system, such that information in the signals has been lost. This information is restored in its entirety when practising the present invention. For the purpose of solving this problem, the inventive digitalizing arrangement includes a multistage logarithmic amplifier chain (A) in which each stage is connected to a separate detector (D), the output signals of which are added in an adder. The adder output signals are then transmitted to a first A/D-converter (AD1) for digitalizing and converting the amplitude components of the signal. At the same time, the undetected signal from the saturated output stage in the amplifier chain is transmitted to a second A/D-converter for digitalizing and converting the phase components of the signal. The digital values obtained on the outputs of the AD-converters (AD1, AD2) are applied to different inputs of a digital signal processor (MP) for numerical processing of the pairwise received digital values in a manner such as to restore the complete vector characteristic of the signal.
Owner:TELEFON AB LM ERICSSON (PUBL)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products