Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

674results about "Link quality based transmission modification" patented technology

Apparatus and method for communicating voice and data between a customer premises and a central office

A method and apparatus are provided for communicating data across a communication link, in a manner that senses and dynamically adapts to the simultaneous transmission of voice information across the local loop. In accordance with one aspect of the invention, a method is provided for dynamically communicating data over a local loop using a modem comprising the steps of transmitting data in a full-band transmission state, sensing a band-limiting condition, and adjusting the transmission of data from the full-band transmission state to a bandlimited transmission state, in response to the sensing step. In accordance with the method, data may be transmitted by the modem across the local loop at the same time that voice information is communicated via telephone across the same local loop. A significant aspect of the present invention is the dynamic allocation of the data transmission bandwidth, whereby the invention senses a condition indicative of whether voice information is being communicated. If so, then the system shifts and / or narrows the data transmission bandwidth to allow for voice communications without interference from or with the data transmission. However, when no voice information is being communicated, the invention dynamically allocates the data transmission bandwidth to utilize at least a portion, if not all, of the frequency band otherwise used for communicating voice information.
Owner:PARADYNE CORP

Data throughput over lossy communication links

In a heterogeneous data network including both wired and wireless / lossy links, a transport protocol method implemented at the wireless host is fully compatible with existing wired networks and wireless gateways, and requires no modification to transport protocols at existing wired hosts. The wireless host calculates a temperament parameter [100] characterizing the error-proneness of the data connection and uses this parameter to determine whether error-induced losses or congestion-losses dominate the data connection [110]. If congestion-losses dominate the data connection, then the host uses a standard technique for acknowledging data packets [130]. If, on the other hand, error-induced losses dominate the connection, the host uses a modified technique for acknowledging data packets [120]. According to this modified technique, the wireless host sends a plurality of non-duplicate acknowledgements of a single packet whenever a packet is received after an out-of-order packet is received. By acknowledging distinct fragments of the packet, rather than identical (i.e., duplicate) acknowledgments of the packet, the acknowledgments have the effect of accelerating recovery of maximal window size at the wired host and increasing data throughput.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Mimo signal processing method involving a rank-adaptive matching of the transmission rate

A bidirectional signal processing method uses parallel transmission of digital transmitted data streams in a multiple input-multiple output system. Related art methods generate high bit error rates mostly in singular transmission channels. For this reason, the rank-adaptive signal processing method provides that the number nd of active subchannels are varied according to the actual channel behavior in order to effect a robust data transmission even in singular radio channels based on a transmit-side and receive-side channel knowledge and a modification of the data vector by a linear matrix vector multiplication while introducing a factor gamma for limiting the maximum transmit power. The maximum transmit power is then only distributed to the currently activated subchannels so that no transmit power remains unused. Another optimization of the number of subchannels nd occurs when selecting the modulation and encoding methods. During the optimal rank-adaptation according to the water-filling principle, another power is allocated to each subchannel. Another modulation and encoding method is accordingly selected for each data stream. During the suboptimal rank-adaptation according to the channel inversion principle, all subchannels have the same power whereby enabling the data streams to be modulated and encoded in a common source
Owner:SIEMENS AG

Vector network analyzer applique for adaptive communications in wireless networks

A test signal generator at a transmitter station and a facsimile generator at a receiver station go through an acquisition and tracking process which aligns the two signals so that a logical processor can compute the frequency transfer function of the entire propagation path for use in an adaptive, concurrently sent communication signal. The frequency transfer function is conveyed back to the transmit end via a control channel permitting an adaptivity function at the transmit end to influence subsequent selection of communication parameters, among which are typically transmitted data rate, selection of modulation, selection of forward error correcting coding, and selection of frequency band for transmission. The same measurement is conveyed to an adaptivity function at the receive end for use in the communications receiver to select demodulator variables such as gain control, and equalization of amplitude and phase, versus frequency. The adaptivity function also permits interspersing of reverse-direction communications over the same frequency bands in a time-share mode between forward-direction and reverse-direction communication with the measurement signals having to be transmitted in only one direction. An alternate embodiment invention of this type is described which is additionally useful for mobile communications channels. Another variation embodiment is described for pure propagation measurements only, absent conveyance of end-user information.
Owner:SARABAND WIRELESS

Effective protocol for high-rate, long-latency, asymmetric, and bit-error prone data links

A system for efficiently and reliably communicating over a high-speed asymmetric communications link. The system includes a first mechanism for connecting a first device to a second device via a channel. A second mechanism delivers data packets over the channel from the first device to the second device. Each packet is associated with a window of packets. A third mechanism selectively employs the second mechanism to re-send data packets not received by the second device after each window of packets. The window of packets is sized in accordance with the bandwidth of the communications link between the first device and the second device, and the round trip delay time. In a specific embodiment, the first mechanism (includes Transmission Control Protocol/Internet Protocol (TCP/IP) functionality on the first device and the second device for establishing a first TCP/IP link from the second device to the first device. The first mechanism also includes Universal Datagram Protocol (UDP) functionality on the first device and the second device for transferring UDP packets from the first device to the second device. The third mechanism sends acknowledgement messages from the second device to the first device specifying the packets not received by the second device. The system further includes a fourth mechanism for selectively disabling the second mechanism when first device does not receive an acknowledgement message after a predetermined time interval. The predetermined time interval is a function of a window timeout variable. The predetermined function is (M)x(window timeout), where M is approximately 2. The window timeout is greater than N multiplied by a number of packets included in the window of packets divided by the data rate of the communications link between the first device and the second device, here N is an integer greater than 1. N is between 3 and 10.
Owner:RAYTHEON CO

Systems and methods for interference mitigation with respect to periodic interferers in short-range wireless applications

Several techniques are provided for use by wireless devices to avoid interference with signals that are of a periodic or quasi-periodic nature that may operate in the same frequency band and proximity. In some cases, the periodic signals are detected and their timing is determined so as to predict when a next interfering event will occur. Devices that are affected by the periodic signal (such as an affected device with information to be transmitted or devices that have information to be transmitted to the affected device) are controlled to prevent transmissions during the interfering intervals. In addition, a process is provided to dynamically fragment a transmit frame of information to transmit part of the information before the interfering interval and the remainder of the information after the interfering interval, rather than waiting to transmit the entire frame until after the interfering interval. Moreover, techniques are provided to correct for clock drift between the periodic signal and a device affected by the periodic signal, as well as for clock drift between a device affected by the periodic signal and other devices that communicate with that device. These techniques prevent interference with periodic signals and in so doing, improve the quality of service of the communication link for both the interfering devices and the other devices.
Owner:CISCO TECH INC

MIMO signal processing method involving a rank-adaptive matching of the transmission rate

A bidirectional signal processing method uses parallel transmission of digital transmitted data streams in a multiple input-multiple output system. Related art methods generate high bit error rates mostly in singular transmission channels. For this reason, the rank-adaptive signal processing method provides that the number nd of active subchannels are varied according to the actual channel behavior in order to effect a robust data transmission even in singular radio channels based on a transmit-side and receive-side channel knowledge and a modification of the data vector by a linear matrix vector multiplication while introducing a factor gamma for limiting the maximum transmit power. The maximum transmit power is then only distributed to the currently activated subchannels so that no transmit power remains unused. Another optimization of the number of subchannels nd occurs when selecting the modulation and encoding methods. During the optimal rank-adaptation according to the water-filling principle, another power is allocated to each subchannel. Another modulation and encoding method is accordingly selected for each data stream. During the suboptimal rank-adaptation according to the channel inversion principle, all subchannels have the same power whereby enabling the data streams to be modulated and encoded in a common source.
Owner:SIEMENS AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products