Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

582 results about "Low overhead" patented technology

Complementary Character Encoding for Preventing Input Injection in Web Applications

Method to prevent the effect of web application injection attacks, such as SQL injection and cross-site scripting (XSS), which are major threats to the security of the Internet. Method using complementary character coding, a new approach to character level dynamic tainting, which allows efficient and precise taint propagation across the boundaries of server components, and also between servers and clients over HTTP. In this approach, each character has two encodings, which can be used to distinguish trusted and untrusted data. Small modifications to the lexical analyzers in components such as the application code interpreter, the database management system, and (optionally) the web browser allow them to become complement aware components, capable of using this alternative character coding scheme to enforce security policies aimed at preventing injection attacks, while continuing to function normally in other respects. This approach overcomes some weaknesses of previous dynamic tainting approaches by offering a precise protection against persistent cross-site scripting attacks, as taint information is maintained when data is passed to a database and later retrieved by the application program. The technique is effective on a group of vulnerable benchmarks and has low overhead.
Owner:POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

Purpose domain for in-kernel virtual machine for low overhead startup and low resource usage

Embodiments of the present invention provide an architecture for securely and efficiently executing byte code generated from a general programming language. In particular, a computer system is divided into a hierarchy comprising multiple types of virtual machines. A thin layer of software, known as a virtual machine monitor, virtualizes the hardware of the computer system and emulates the hardware of the computer system to form a first type of virtual machine. This first type of virtual machine implements a virtual operating domain that allows running its own operating system. Within a virtual operating domain, a byte code interpreter may further implement a second type of virtual machine that executes byte code generated from a program written in a general purpose programming language. The byte code interpreter is incorporated into the operating system running in the virtual operating domain. The byte code interpreter implementing the virtual machine that executes byte code may be divided into a kernel component and one or more user level components. The kernel component of the virtual machine is integrated into the operating system kernel. The user level component provides support for execution of an applet and couples the applet to the operating system. In addition, an operating system running in a virtual operating domain may be configured as a special purpose operating system that is optimized for the functions of a particular byte code interpreter.
Owner:RED HAT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products