Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

141 results about "Coherence time" patented technology

For an electromagnetic wave, the coherence time is the time over which a propagating wave (especially a laser or maser beam) may be considered coherent, meaning that its phase is, on average, predictable. In long-distance transmission systems, the coherence time may be reduced by propagation factors such as dispersion, scattering, and diffraction. The coherence time, usually designated τ, is calculated by dividing the coherence length by the phase velocity of light in a medium; approximately given by τ=1/Δν≈λ²/(c Δλ) where λ is the central wavelength of the source, Δν and Δλ is the spectral width of the source in units of frequency and wavelength respectively, and c is the speed of light in vacuum.

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Solid-State Quantum Memory Based on a Nuclear Spin Coupled to an Electronic Spin

A system comprising a solid state lattice containing an electronic spin coupled to a nuclear spin; an optical excitation configuration which is arranged to generate first optical radiation to excite the electronic spin to emit output optical radiation without decoupling the electronic and nuclear spins; wherein the optical excitation configuration is further arranged to generate second optical radiation of higher power than the first optical radiation to decouple the electronic spin from the nuclear spin thereby increasing coherence time of the nuclear spin; a first pulse source configured to generate radio frequency (RF) excitation pulse sequences to manipulate the nuclear spin and to dynamically decouple the nuclear spin from one or more spin impurities in the solid state lattice so as to further increase the coherence time of the nuclear spin; a second pulse source configured to generate microwave excitation pulse sequences to manipulate the electronic spin causing a change in intensity of the output optical radiation correlated with the electronic spin and with the nuclear spin via the coupling between the electronic spin and the nuclear spin; and a detector configured to detect the output optical radiation correlated with the electronic spin and the nuclear spin so as to detect a nuclear spin state of the nuclear spin.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Channel estimation method for Orthogonal Frequency Division Multiplexing system and device thereof

The invention provides a channel estimation method for Orthogonal Frequency Division Multiplexing system and a device thereof. The channel estimation method comprises the following steps: A. calculating according to the frequency domain channel estimation of a reference signal to obtain the delay spread of the channel; B. generating a frequency domain interpolation coefficient according to the delay spread; C. carrying out interpolation according to the frequency domain interpolation coefficient and the frequency domain channel estimation of the reference signal to obtain the channel estimation of the whole frequency of the position where the reference signal is located; D. calculating according to the frequency domain channel estimation at different time domain positions to obtain the coherence time of the channel; E. generating a time domain interpolation coefficient according to the coherence time; and F. carrying out interpolation according to the time domain interpolation coefficient and the channel estimation of the whole frequency located with the range of the coherence time to obtain the whole channel estimation of the time domain and the frequency domain. In light of the invention, the channel estimation result can self-adaptively change with the change of the channel.
Owner:ST ERICSSON SEMICON BEIJING

Increment mixing decoding amplification forwarding cooperation method based on opportunistic relaying

The invention provides an increment mixing decoding amplification forwarding cooperation method based on opportunistic relaying and belongs to the technical field of wireless digital transmission. A system comprises an information source node, a destination node and N relay nodes. Each node is provided with an antenna. The system works in a half-duplex transmission mode. The communication process of the system includes the first step of selecting the relay nodes with optimal communication channel conditions to participate in cooperation from the N relay nodes according to the opportunistic relaying criteria within each coherence time period of a communication channel, and the second step of selecting a corresponding cooperative transmission method, namely, direct transmission, decode-and-forward transmission and amplification forwarding transmission, through comparison between the threshold valve of an instant signal-to-noise ratio of links and a corresponding set signal-to-noise ratio of the links. According to the increment mixing decoding amplification forwarding cooperation method based on opportunistic relaying, relays and cooperation schemes can be flexibly selected according to the conditions of the communication channel and the relay nodes. Consequently, the performance of a cooperative relay system is improved, and the transmission power and the bit error rate required by the system are reduced.
Owner:SHANDONG UNIV

Wiring method of superconducting quantum bit system for surface coding scheme and wiring board

ActiveCN105957832AAvoid the problem of decoherence time dropSemiconductor/solid-state device detailsSolid-state devicesCoherence timeQuantum system
The invention provides a wiring method of a superconducting quantum bit system for a surface coding scheme and a wiring board, and belongs to the field of a quantum system. The wiring board comprises a quantum chip substrate, a plurality of insulating layers, a wiring layer and a plurality of grounding layers, wherein the quantum chip substrate is provided with a plurality of quantum bits and a plurality of couplers, and the insulating layers are arranged at the lower surface of the quantum chip substrate in a covering manner; the wiring layer is arranged in the insulating layers of the plurality of insulating layers, and the wiring layer is connected with the quantum bits and / or the couplers; and the plurality of grounding layers are correspondingly arranged at the upper surfaces and the lower surfaces of the plurality of insulating layers. According to the wiring method provided by the invention of the superconducting quantum bit system for the surface coding scheme and the wiring board, a problem that the quantum bit de-coherence time is reduced because key devices such as the quantum bits are covered with an insulating film is avoided through the wiring board provided with the quantum chip substrate, the insulating layers and the grounding layers.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Adaptive pilot design for mobile system

A method, and device implementing the method, for adaptively allocating pilot signals in a wireless communication system. The method includes receiving channel data, including channel length (L) data, inter-carrier interference power (PICI) data, coherence time (CT) data, and a number of subcarriers (N). The method further includes selecting, when L is greater than a first channel length threshold (LTH1), a first number of pilot signals between a minimum value of L and a maximum number of pilot signals NP,MAX, wherein the first number of pilot signals NP are equally spaced in time according to the CT data, and equally spaced in frequency. Further, the method includes selecting, when L is less than LTH1 and PICI is less than a power threshold (PTH), a second number of pilot signals such that the second number of pilot signals is between the minimum value of L and NP,MAX, wherein the second number of pilot signals are equally spaced in time according to the CT data, and equally spaced in frequency. Finally, the method includes selecting, when L is less than LTH1 and PICI is greater than PTH, a third number of pilot signals such that the third number of pilot signals is equal to n times L (nL), wherein n is an integer, the third number of pilot signals being equally spaced in time according to the CT data, and allocated according to a cluster(n) clustered pilot scheme with a cluster size equal to n, the n-sized clusters being clustered in frequency.
Owner:IND TECH RES INST

Optimal training sequence and channel estimation method and system for superimposed training based OFDM systems

The present invention relates to a method for minimizing means square estimation error (MSEE) and bit error rate during channel estimation and equalization between a transmitter and a receiver of an orthogonal frequency division multiplexing (OFDM) systems. The method comprises transmitting from said transmitter to said receiver a training sequence for channel estimation being superimposed onto data at specific pilot to data power ratio (PDPR), receiving the OFDM signals along with the training sequence as an input, cross-correlating said received signal to a specific lag determined by the rms delay spread of the channel, with a specific known training sequence stored in a register, and which is also the sequence that is added to the data at the transmitter in the time domain having a prescribed pilot to data power ratio. The cross-correlated data being processed over a length of samples which can be extended to exploit the coherence time of the channel and processed along with the stored values of the inverse of autocorrelation values of superimposed training (ST) sequence so as to obtain a reliable least squares based channel estimate in a way the PDPR is limited or otherwise. The invention also relates to a system comprising means for computing a time domain least squares (LS) based channel estimate at the receiver.
Owner:INDIAN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products