Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1815 results about "Time scaling" patented technology

Time Scaling. The Time Scaling is very flexible, and can scale from viewing over 24 hours to less than 1 second in a window. There are a number of ways to adjust the time scaling: Use the buttons on the toolbar of the WaveView window.

Internet profiling

A system, method, and various software products provide for consistent identification of web users across multiple web sites, servers and domains, monitoring and capture of data describing the users' web activities, categorization of the web activity data, aggregation of the data into time dependent models describing interest of users and groups over time. Categorization is made with respect to a category tree which may be standardized or customized for each web site. User groups may be defined based on membership rules for category interest information and demographics. Individual user profiles are then created for users automatically based on satisfaction of the user group membership rules. As new data is collected on a user over time, the category interest information extracted from the user's web activity is updated to form a current model of the user's interests relative to the various categories. This information is also used to automatically update group membership and user profile information. Identification of users across multiple sites is provided by a global service that recognizes each user and provides a globally unique identifier to a requesting web server, which can use the identifier to accumulate activity data for the user. Client side user identification is provided to track user activity data on web servers that do not communicate with the global service and do not process activity for category information. User profiles may be shared among web sites that form alliances. User activity data may be aggregated along various dimensions including users/user groups, categorization, and time to provide robust models of interest at any desired time scale.
Owner:FUJITSU LTD

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and/or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and/or homogeneous particle sets, among others, in series and/or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and/or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and/or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and/or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and/or homogeneous particle sets, among others, in series and/or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and/or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and/or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

System and method for visualizing connected temporal and spatial information as an integrated visual representation on a user interface

A system and method for configuring the presentation of a plurality of presentation elements in a visual representation on a user interface, the presentation elements having both temporal and spatial parameters, the method comprising the steps of: defining a time bar with a time scale having time indicators as subdivisions of the time scale and having a first global temporal limit and a second temporal global limit of the time scale for defining a temporal domain of the presentation elements, defining a focus range of the time bar such that the focus range has a first local temporal limit and a second local temporal limit wherein the first local temporal limit is greater than or equal to the first global temporal limit and the second local temporal limit is less than or equal to the second global temporal limit; defining a focus bar having a focus time scale having focus time indicators as subdivisions of the focus time scale and having the first and second local temporal limits as the extents of the focus time scale, such that the focus time scale is an expansion of the time scale; and displaying a set of presentation elements selected from the plurality of presentation elements based on the respective temporal parameter of each of the set of presentation elements is within the first and second local temporal limits.
Owner:PEN LINK LTD

Solving the distal reward problem through linkage of stdp and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:FLUIDIGM CORP

Method for real-time traffic analysis on packet networks

An architecture for capture and generation, and a set of methods for characterization, prediction, and classification of traffic in packet networks are disclosed. The architecture consists of a device that stores packet timing information and processes the data so that characterization, prediction, and classification algorithms can perform operations in real-time. A methodology is disclosed for real-time traffic analysis, characterization, prediction, and classification in packet networks. The methodology is based on the simultaneous aggregation of packet arrival times at different times scales. The traffic is represented at the synchronous carrier level by the arrival or non-arrival of a packet. The invention does not require knowledge about the information source, nor needs to decode the information contents of the packets. Only the arrival timing information is required. The invention provides a characterization of the traffic on packet networks suitable for a real-time implementation. The methodology can be applied in real-time traffic classification by training a neural network from calculated second order statistics of the traffic of several known sources. Performance descriptors for the network can also be obtained by calculating the deviation of the traffic distribution from calculated models. Traffic prediction can also be done by training a neural network from a vector of the results of a given processing against a vector of results of the subsequent processing unit; noticing that the latter vector contains information at a larger time scale than the previous. The invention also provides a method of estimating an effective bandwidth measure in real time which can be used for connection admission control and dynamic routing in packet networks. The invention provides appropriate traffic descriptors that can be applied in more efficient traffic control on packet networks.
Owner:TELECOMM RES LAB

Method and apparatus for displaying body sounds and performing diagnosis based on body sound analysis

InactiveUS6790183B2Rapidly and accurately detecting body sound abnormalitiesUltrasonic/sonic/infrasonic diagnosticsAuscultation instrumentsDigital dataSignal processing circuits
A lung sound diagnostic system for use in collecting, organizing and analyzing lung sounds associated with the inspiration(s) and expiration(s) of a patient. The system includes a plurality of transducers that may be placed at various sites around the patient's chest. The microphones are coupled to signal processing circuitry and A/D converters which digitize the data and preferably provides the digital data to a computer station. A data collection and organization program, executing on the computer station, organizes and formats the data into a combination display for display or printing. The combinational display includes at least two display elements. In a first display element, the data is shown for both inspiration and expiration combined in a first time scale. In a second display element, the data for inspiration and expiration are shown individually in a second time scale that is time-expanded relative to the first time scale. The system may also include application programs for detecting and classifying abnormal sounds. The resulting information may be displayed in a variety of formats to facilitate diagnosis. Additionally, the system may include an analysis program for comparing selected criteria corresponding to the detected abnormal sounds with predefined thresholds in order to provide a likely diagnosis.
Owner:STETHOGRAPHICS

Solving the distal reward problem through linkage of STDP and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analysis. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analysis, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting

A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Owner:NASA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products