Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5473 results about "Blow molding" patented technology

Blow molding (BrE moulding) is a specific manufacturing process by which hollow plastic parts are formed and can be joined together. It is also used for forming glass bottles or other hollow shapes.

Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
Owner:NASA

Light emitting medium and illumination system

The present invention relates to a light emitting medium which includes a container and a liquid core. In accordance with an important aspect of the invention, the liquid core includes an aqueous solution or mixture of a water-soluble polymer. The refractive indices of the liquid core and that of the container may be different. However, the aqueous solution or mixture may have a lower or higher refractive index than that of the container. The mixture may be completely transparent or translucent and have a color other than clear. The container may be of any material that is translucent or transparent and be of any color.The raw materials for the light emitting medium in accordance with the present invention are less costly than known light guides and offer numerous advantages when compared to other illumination light guides. Water advantageously is a major raw material of the present invention. The water-soluble polymer component may be used in relatively minute amounts. For example, a liquid core in accordance with the present invention can be formed from up to 99.9% water and 0.01% water-soluble polymers, although higher amounts of water-soluble polymer may result in better characteristics. The container material may be formed from typically available polymers, such as polyvinyl chloride, acrylics and methacrylics or polyolefins and be formed by commonly known processes, such as extrusion, blow-molding and injection molding.In one embodiment of the invention, the light emitting medium in accordance with the present invention is combined with at least one light emitting diode (LED), a power source and a switching device to form a self contained illumination device. In another embodiment of the invention, images are formed on the container in different colors. Multiple LEDs of various wavelengths are selectively illuminated to simulate motion of the images.
Owner:ZARIAN JAMES ROUBEN +1

System, method and computer program product for forming a reconfigurable cavity and an expandable shoe last and for constructing a shoe

The present invention is an exemplary embodiment of the present invention is directed to a system, method and computer program product for creating a three-dimensionally reconfigurable cavity. The system can include a container that is configurable to create a three dimensional cavity. The system can be operative to form a footwear last in the cavity. The last can be formed from a plastic-like material. The system can include a blow molding apparatus having at least one directional deflector. The container can be capsule, hemispherical, cylindrical, or spherical-shaped. The system can include a container having holes to receive rods. The system can include an array of rods. The rods can be movable through the container. The system can further include rods that are threaded; gear-driven; coupled to a belt; coupled to a partial belt; or belt-driven. The cavity can be formed by an inner end of the rods. If more than one rod occupies a single point of the cavity, then only one rod participates in forming the cavity and other rods will not participate. Participating rods can be selected according to an optimizing module. The software module can determine an intersection of a rod with a digitized cluster of points representing a 3 dimensional surface. A method of forming a footwear last from a collapsible and expandable last is described.
Owner:SAJEDI MOHAMMAD H

Syringe for use with injectors and methods of manufacturing syringes and other devices

A syringe for use in a pressurized injection of a fluid includes a syringe barrel including a polymeric material having undergone expansion via blow molding. An inner diameter of the syringe barrel can, for example, be sufficiently constant (over at least a portion of the axial length of the syringe) that a plunger slidably positioned within the syringe barrel and in generally sealing contact with an inner wall of the syringe barrel can be used within the syringe barrel to generate a pressure of at least 1 psi within the syringe barrel. In several embodiment, the inner diameter of the syringe barrel is sufficiently constant to generate a pressure of at least 100 psi, at least 300 psi, or even at least 500 psi within the syringe barrel. A method of forming a syringe includes the steps of: injection molding at least one polymeric material to form a preform; placing the preform into an blow mold die; and expanding at least a portion of the preform while heating the preform within the die to form a barrel of the syringe. The syringes can be formed to withstand relatively high pressures as described above. The at least one polymeric material can, for example, be polyethyleneterephthalate, cyclic olefin polymer, polypropylene, polystyrene, polyvinylidene chloride, polyethylene napthalate and/or nylon.
Owner:BAYER HEALTHCARE LLC

Preparation method of recycled polyester chip microfilaments and usage thereof

The invention relates to a preparation method of recycled polyester chip microfilaments and a usage thereof, belonging to the field of plastic modification and category of composite material/alloy promoter. The polyester chip microfilament is an ideal promoter which has excellent performance, environment-friendliness, high added value, wide application range and broad market prospect and can change the mechanical property of the composite material/alloy. Recycled blow molding polyester (RPET/RPBT) is taken as main raw material, and the following formula and process are adopted for preparing the microfilament according to parts by weight: 100 parts of recycled polyester (RPET/RPBT), 5-30 parts of wire-drawing high-density polyethylene (HDPE)/ polypropylene (PP)/ linear low-density polyethylene (LLDPE), 0.1-4 parts of crosslinking agent/ chain extender/anchoring agent, 0.1-0.8 part of antioxidant, 0.5-6 parts of nucleating agent, and 1-5 parts of nucleate accelerant, and other processing aids (such as lubricant and plasticizer)/functional aids (such as fire retardant and ultraviolet absorber) can be additionally and appropriately added. The microfilament is prepared through extrusion, cooling, drawing and granulating by the reaction under 90-260 DEG C under the action of mechanical shear. The recycled polyester (RPET/RPBT) microfilament prepared in the invention can endow the composite material/alloy with excellent mechanical property.
Owner:王世和
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products