Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

726 results about "Transfer molding" patented technology

Transfer molding (BrE moulding) is a manufacturing process where casting material is forced into a mold. Transfer molding is different from compression molding in that the mold is enclosed [Hayward] rather than open to the fill plunger resulting in higher dimensional tolerances and less environmental impact. Compared to injection molding, transfer molding uses higher pressures to uniformly fill the mold cavity. This allows thicker reinforcing fiber matrices to be more completely saturated by resin. Furthermore, unlike injection molding the transfer mold casting material may start the process as a solid. This can reduce equipment costs and time dependency. The transfer process may have a slower fill rate than an equivalent injection molding processes.

Blend material including macrocyclic polyester oligomers and processes for polymerizing the same

A blend of a macrocyclic polyester oligomer and a polymerization catalyst as a one component ready-to-use material with a long shelf life enables production of parts from macrocyclic polyester oligomers without the modification of existing equipment, thereby reducing time and cost of manufacture while expanding the application of macrocyclic polyester oligomers. In this blend material, the macrocyclic polyester oligomer remains intact in solid state at ambient conditions. Upon melting, the blend material initially forms low viscosity fluid, and then rapidly polymerizes to form high molecular weight polyesters which subsequently solidify to form crystalline polymers. In the case of certain macrocyclic polyester oligomers, for example, poly(1,4-butylene terephthalate), demolding can take place at the polymerization temperature, e.g., at about 180° C. to 200° C., because the resulting polyester polymer solidifies fairly rapidly at that temperature without cooling. In one aspect, the invention generally features a blend material that includes a macrocyclic polyester oligomer, a polymerization catalyst, and optionally, a filler. In another aspect, the invention generally features a process for preparing a blend material. In yet another aspect, the invention features processes such as rotational molding, resin film infusion, pultrusion, resin transfer molding, filament winding, making and using powder-coated or hot melt prepreg, compression molding, and roll wrapping, which use the blend material.
Owner:CYCLICS CORP

Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
Owner:NASA

White LED device comprising dual-mold and manufacturing method for the same

InactiveUS20090039762A1Improved color rendering and spectral distributionExcellent color reappearanceDischarge tube luminescnet screensLamp detailsEpoxyPhosphor
A conventional high-luminance white light emitting diode (LED) device has the disadvantage of it being difficult to achieve high luminance and excellent and uniform quality since emitted light is weaker in the red wavelength region than at yellow wavelengths. The present invention provides a high-luminance white LED device with improved color rendering and spectrum distribution, and a method of manufacturing the same. The white LED device according to one embodiment of the present invention is characterized by dual molds. The white LED device includes: an LED chip mounting member for mounting an LED chip; at least one blue LED chip or ultraviolet LED chip mounted on the LED chip mounting member; a first mold having a transparent epoxy resin and a first phosphor and sealing the blue or ultraviolet LED chip, the first phosphor dispersed in the transparent epoxy resin to convert light emitted from the blue or ultraviolet LED chip into first light having a first wavelength; and a second mold having a transparent epoxy resin and a second phosphor and formed on the first mold, the second phosphor dispersed in the transparent epoxy resin to convert light emitted from the blue or ultraviolet LED chip into second light having a second wavelength, the second light being white light obtained by combination of the emitted light with the first light. The white LED device having the dual molds can be a lamp-type LED device, an injection-molded housing package-type LED device, or a transfer-molded chip-type LED device.
Owner:ST&I
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products