Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1079 results about "Filament winding" patented technology

Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures (pressure vessels or tanks). This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle (Axis 1 or X: Spindle) while a delivery eye on a carriage (Axis 2 or Y: Horizontal) traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle. The most common filaments are glass or carbon and are impregnated in a bath with resin as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the rotating mandrel is placed in an oven or placed under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.

Blend material including macrocyclic polyester oligomers and processes for polymerizing the same

A blend of a macrocyclic polyester oligomer and a polymerization catalyst as a one component ready-to-use material with a long shelf life enables production of parts from macrocyclic polyester oligomers without the modification of existing equipment, thereby reducing time and cost of manufacture while expanding the application of macrocyclic polyester oligomers. In this blend material, the macrocyclic polyester oligomer remains intact in solid state at ambient conditions. Upon melting, the blend material initially forms low viscosity fluid, and then rapidly polymerizes to form high molecular weight polyesters which subsequently solidify to form crystalline polymers. In the case of certain macrocyclic polyester oligomers, for example, poly(1,4-butylene terephthalate), demolding can take place at the polymerization temperature, e.g., at about 180° C. to 200° C., because the resulting polyester polymer solidifies fairly rapidly at that temperature without cooling. In one aspect, the invention generally features a blend material that includes a macrocyclic polyester oligomer, a polymerization catalyst, and optionally, a filler. In another aspect, the invention generally features a process for preparing a blend material. In yet another aspect, the invention features processes such as rotational molding, resin film infusion, pultrusion, resin transfer molding, filament winding, making and using powder-coated or hot melt prepreg, compression molding, and roll wrapping, which use the blend material.
Owner:CYCLICS CORP

Filament Winding Automated System

The present invention makes it possible to increase production efficiency while reducing costs. A filament winding automated system according to the present invention includes a winding device winding a fiber bundle R paid out from a head portion 12, 13, around a mandrel M1, an installing device 5 installing the mandrel around M1 which no fiber bundle has been wound yet, at a winding position, a discharging device 5 discharging the mandrel around which the fiber bundle has already been wound, from the winding position, a delivery device 3 holding and delivering the fiber bundle R from the mandrel around which the fiber bundle has already been wound to a mandrel M1 around which no fiber bundle has been wound yet, and a cutting device cutting the fiber bundle R, and after winding is completed, the delivery device 3 holds the fiber bundle R paid out from the head portion 12, 13, the cutting device cuts and separates the fiber bundle R from the mandrel around which the fiber bundle has already been wound, the discharging device 5 discharges the mandrel around which the fiber bundle has already been wound, the installing device installs the mandrel M1 around which no fiber bundle has been wound yet, and the winding device starts winding the fiber bundle R held by the delivery device 3, around the mandrel M1 around which no fiber bundle has been wound yet.
Owner:MURATA MASCH LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products