Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1620results about "Vessel manufacturing" patented technology

Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating

A method of passivating the interior surface of a gas storage vessel to protect the surface against corrosion. The interior surface of the vessel is first dehydrated and then evacuated. A silicon hydride gas is introduced into the vessel. The vessel and silicon hydride gas contained therein are heated and pressurized to decompose the gase. A layer of silicon is deposited on the interior surface of the vessel. The duration of the silicon depositing step is controlled to prevent the formation of silicon dust in the vessel. The vessel is then purged with an inert gas to remove the silicon hydride gas. The vessel is cycled through the silicon depositing step until the entire interior surface of the vessel is covered with a layer of silicon. The vessel is then evacuated and cooled to room temperature.
Owner:SILCOTEK CORP

Hydrogen handling or dispensing system

Systems for handling and / or dispensing hydrogen or a mixture of fuels containing hydrogen gas including refueling stations for hydrogen-powered vehicles. Pure hydrogen or various mixtures ratios of hydrogen and CNG may be dispensed. Hydrogen handling equipment may include a hydrogen generator, a pressurizing apparatus or compressor, pressure vessels, piping, valves, vent pipes, and / or a dispenser. Substantially vertical orientation of pressure vessels may reduce the amount of land required and facilitate installation in urban environments. Pressurization may take place before hydrogen generation to reduce the power required for pressurization. Safety features include enclosures and surrounding walls that lean away from the equipment. Any leaking hydrogen, fires, or explosions may be contained and / or directed upward, protecting human life and property. Systems may be shop assembled and certified.
Owner:ARIZONA PUBLIC SERVICE

Liquefied natural gas structure

An offshore liquefied natural gas structure may receive, store, and process liquefied natural gas from carriers. A structure may be a gravity base structure. A structure may include a system of ballast storage areas, transfer equipment to offload liquefied natural gas from a carrier, docking equipment to allow direct mooring with carriers, platforms to elevate equipment, water intake systems to provide water to the structure, wave deflectors, and / or projections extending from a bottom of the structure. A portion of the structure may be composed of lightweight concrete. Pipelines may be coupled to the structure to export processed natural gas onshore. Living quarters, flare towers, and export line metering equipment may be included on the structure.
Owner:SHELL OIL CO

Gastight container

The invention relates to a gastight, pressure-resistant storage and / or transport container (10) for low-molecular, reactive filling media, especially for hydrogen, oxygen, air, methane and / or methanol. Said container has a high filling pressure and is embodied in an essentially rotationally symmetric manner, having at least one connector cap (15) with a sealing device (16). The wall (12) of the container is essentially comprised of a thermoplastic synthetic material having at least one diffusion barrier (18, 19) system and / or a diffusion barrier and anti-corrosion system (18, 19). In order to offer protection for hydrogen and oxygen containers, the diffusion barrier system can be embodied in the form of at least one compact layer and / or can contain finely dispersed, distributed reactive nanoparticles (18) in the wall (12) of the container, in at least one composite film (28) and / or in at least one diffusion barrier layer (18).
Owner:MOSER EVA MARIA +1

Damage and leakage barrier in all-composite pressure vessels and storage tanks

ActiveUS20090314785A1Superior barrier against leakageStrengthAdhesive processesGas handling applicationsFiberAxis of symmetry
A linerless tank structure has a body that defines an enclosed interior volume. The body has a cylindrical section having an axis of symmetry and a dome section coupled with the cylindrical section. The construction of the pressure vessel includes multiple fiber plies. At least one of the fiber plies is a helical ply having fibers traversing the dome helically about the axis of symmetry. At least a second of the fiber plies is a braided or woven ply.
Owner:COMPOSITE TECH DEV

Pressure regulator adaptable to compressed gas cartridge

This pressure regulator is specifically designed to operate with a portable compressed gas cartridge thus reducing the high vapor pressure found in compressed gas cartridges down to a substantially consistent outlet pressure. Due to the nature of the crowded regulator art, the soon to be embodied pressure regulator has been specifically embodied for use in the portable compressed gas cartridge harnessing art and this specific use is carried into the claims. Exemplified in the pressure regulator embodiments is a reduced amount of components over existing designs. Additionally, safety and reliability features have been integrated into the design and will shortly be taught in the following paragraphs. A burp-off feature in all embodiments will be exemplified that vents back-pressure spikes as well as a method of adjusting the burp-off back-pressure spikes independent of regulated pressure in some embodiments.
Owner:HOLLARS ANTHONY SCOTT

Storage vessel and method of forming

A storage vessel, such as vessels used in storing high pressure gas is provided. The storage vessel includes a liner having a center portion and a first and second end dome. A first composite layer is disposed circumferentially about the center portion. A second composite layer is disposed about said first composite layer and the first and second end dome. In some embodiments, the second composite layer is formed from a knitted or braided sleeve that is tightened over the liner and first composite layer by pulling the sleeve.
Owner:GM GLOBAL TECH OPERATIONS LLC

Pressure vessel and process for producing the same

The pressure vessel of the present invention comprises an inner shell capable of serving as a gas barrier and a pressure resistant outer shell provided to cover the inner shell, said outer shell being made of an FRP comprising reinforcing fibers and a resin and is 35 GPa or more in tensile modulus and 1.5% or more in tensile breaking strain. The present invention can provide a pressure vessel not only light in weight,.but also excellent in retaining its internal pressure against repetitive impacts and also excellent in reliability. The process for producing a pressure vessel of the present invention comprises the step of forming a pressure resistant outer shell made of an FRP comprising reinforcing fibers and a resin and is 35 GPa or more in tensile modulus and 1.5% or more in tensile breaking strain, around an inner shell capable of serving as a gas barrier, by a filament winding method or a tape winding method. The present invention can produce a pressure vessel excellent in retaining its internal pressure, excellent in reliability, and light in weight at a low cost.
Owner:TORAY IND INC

Composite pressure tank and process for its manufacture

A pressure vessel and method for producing a pressure vessel is disclosed. The pressure vessel comprises a liner shell fabricated from composite material applied to a soluble mandrel having a body shaped to pattern an interior of the pressure vessel, the liner shell having an opening, a boss having an aperture therethrough, the boss sealingly bonded to the liner shell with the aperture adjacent the opening, and an outer shell fabricated from plies of composite material filament impregnated with matrix material wound over the liner shell and the boss, but not over the aperture.
Owner:MICROCOSM INC

Pressure Vessels, Design and Method of Manufacturing Using Additive Printing

Method and design of a pressure vessel having an internal supportive structure that reduces pressure forces applied to the external shell of the vessel by distributing such forces via internal bonds mostly connected to a central supporting element. The method and design allow making much lighter and stronger pressure vessels and containers using additive manufacturing technology, known as 3D printing.
Owner:KOTLIAR IGOR K

Diffusion layer for pressure vessels

Disclosed is a vessel and a method of forming the vessel including an inner shell, an outer shell, and a diffusion layer disposed therebetween, wherein the diffusion layer facilitates the venting of a fluid from between the inner shell and the outer shell.
Owner:GM GLOBAL TECH OPERATIONS LLC

Hydrogen tank liner material and hydrogen tank liner

A hydrogen tank liner material comprises a polyamide resin composition which comprises (A) a polyamide resin at 85-40 wt %, (B) a copolyamide at 5-30 wt % and (C) an impact-resistant material at 10-30 wt % with respect to the total weight of the polyamide resin composition. Preferably, the (B) copolyamide is PA6 / 66 and the (C) impact-resistant material is an acid-modified ethylene / α-olefin-based copolymer. A hydrogen tank liner material with excellent gas barrier properties and superior impact resistance even at low temperatures is obtained.
Owner:UBE CORP +1

Method for fabricating composite pressure vessels

A process for fabricating a composite vessel includes the steps of: A) preforming (e.g., by winding fiber and at least one thermoplastic substance onto a thermoplastic liner) a thermoplastic shell which has at least one opening for access to the interior; B) extruding a circular cross section of a fluid parison of thermoplastic material (which preferably is chosen to have a melting point lower than that of the thermoplastic shell) into the interior of the thermoplastic shell through the opening; C) in a mold, applying at least one force (such as gas under pressure) which tends to urge the fluid parison toward the interior walls of the thermoplastic shell (which may be preheated prior to introduction into the mold) such that the fluid parison imparts heat to the thermoplastic shell; D) continuing step C) until the thermoplastic shell and the fluid parison consolidate to form a composite vessel; E) cooling the vessel until it is solidified; and F) removing the vessel from the mold. For some composite vessels, prior to step C), an insert may be introduced into the interior of the parison and positioned in alignment with the opening in the thermoplastic shell such that the insert is rendered integral with the composite vessel during step D). Suitable thermoplastic materials include polyethylene, polypropylene, polybutylene terephthalate and polyethylene terephthalate. The resulting composite vessel exhibits superior mechanical and aesthetic properties.
Owner:FLECK CONTROLS +1

Method and apparatus for cryogenic storage of thermolabile products

A system and method for controlled rate freezing and storage of thermolabile substances. The system includes a storage unit for receiving product stored within a bag and an overlying protective canister associated with a robotic arm and reading device which places the canister in the preserving environment. A control system, driven by a computer monitors the ingress, egress and storage location and particularized profiles of the articles being placed in storage.
Owner:NEW YORK BLOOD CENT +1

Storage Systems For Adsorbable Gaseous Fuel And Methods Of Producing The Same

A storage system for an absorbing gas including a plurality briquette units situated within the storage tank is disclosed. In some embodiments each briquette unit includes a liner or open vessel, and compressed gas-absorbing particulate matter associated with the liner for external support In some embodiments, the liner or vessel maintains the form of the briquette unit. The liner or vessel do not form a pressure tight vessel, and in some embodiments, the local pressure rating of the liner or vessel is less than the gas pressure within the storage tank. Exemplary gas-absorbing materials include but are not limited to methane and hydrogen adsorbing materials such as activated carbon, zeolite, and other appropriate hydrocarbon gas and / or hydrogen adsorbing materials. Optionally, each briquette unit includes a wrapper for preventing circulation of said particulate matter within the storage tank. Optionally, the storage system includes a mechanism for supplying or removing heat to at least one briquette unit. Furthermore, a method for manufacturing any of the aforementioned gas storage systems is disclosed. Some embodiments of the present invention provide methane-powered motor vehicles including but not limited to automobiles, buses, trucks and ships including a storage system with compressed methane-adsorbing particulate matter
Owner:ANGSTORE TECH

Complex-shape compressed gas reservoirs

InactiveUS20060175337A1Maximum cooling efficiencyEffectiveGas handling applicationsHatsEngineeringHigh pressure
Portable cooling systems, employing a high pressure reservoir adapted to ergonomically interface with a user and / or a wearable article to deliver a flow of cooling gas through a conduit system are provided. Such a system is adapted to provide powered cooling to locations where only very small and portable cooling systems can fit. Various user retainable appliances or articles may have cooling features incorporated therein. The molded plastic high pressure reservoir may have other uses as well.
Owner:INVENTION FACTORY

Portable device for supplying compressed CO2 from a pressure vessel to a pneumatic tool

A device includes a pressure regulator comprising a body including a control chamber adapted to connect to a portable pressure vessel filled with compressed CO2 via an inlet coupling, the control chamber having a threaded stepped diameter passageway, a relief valve, and a pressure gauge, a valve, a cap including a hand wheel, and a pressure adjustment assembly including a resilient sealing disk, a disc, a thumbtack member, a fastener for securing the thumbtack member and the sealing disk together, and a spring biased between the sealing disk and the disc; a housing for partially enclosing the pressure regulator with the hand wheel, the pressure gauge, and an outlet coupling being exposed; and a hanging member pivotably secured onto the housing.
Owner:FEVER INDAL

Structure and Method for Bonding Two Members, Gas Container and Method for Manufacturing Such Gas Container

An object is to provide a bonded structure of two members, a bonding method of two members in which end portions of a pair of resin members can appropriately be bonded to each other by laser welding while easily suppressing a positional deviation between the end portions of the resin members, a gas container and a manufacturing method of the gas container. In the bonded structure of two members, an external thread provided at a substantially cylindrical end portion of a resin member is screwed into an internal thread provided at a substantially cylindrical end portion of a resin member and irradiated with laser to bond the end portions of the resin members to each other by the laser welding. In the gas container, this bonded structure is applied to a resin liner of the gas container, and liner constituting members are screwed and bonded by the laser welding.
Owner:TOYOTA JIDOSHA KK

Insulation for cryogenic tanks

A magnetic multi-layer insulation system for a cryogenic storage tank. The system includes multiple layers of insulation comprising a carrier support structure disposed between a first major surface of a magnetic material defining a north pole facing away from the carrier support structure, and a second and opposite major surface of a magnetic material defining a south pole facing away from the carrier support structure. A reflective surface, or metal foil, is disposed adjacent the magnetic poles to deflect radiation. The layers are repelled from one another without the use of spacers. In various embodiments, the magnetic material is a permanent magnet selected from the group consisting of Samarium-Cobalt, Alnico, Neodymium-Iron-Boron, an alloy of the Lanthanide group of elements, and mixtures and alloys thereof.
Owner:GM GLOBAL TECH OPERATIONS LLC

Pressure vessel with impact and fire resistant coating and method of making same

An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.
Owner:NASA

Storage tank for cryogenic liquids

A new procedure for constructing cryogenic storage tanks involves erecting a freestanding metal liner. The liner is sized and configured to withstand the hydraulic forces the concrete wall of the tank being poured without the need for temporary stiffeners on the inside surface of lower portions of the liner. Lateral tension ties can be connected to anchor ties on an outward surface of the liner and used to tie the liner to outer formwork. These ties may be spaced up to about 2 m apart. Studs can also be provided on the outer surface of the liner, and a cylindrical ring of cryogenic steel can be integrated into the liner.
Owner:CHICAGO BRIDGE & IRON CO

Device for overheat protection for a type 4 compressed gas container

A pressure container (70) for storing hydrogen gas (26) under pressure for a fuel cell engine. The container (70) includes an outer support layer (12) and a thermoplastic liner (14). An adapter (18) is provided in the outer layer (12) and the liner (14) to allow fill gas (20) to fill the container (70) under pressure. A fill vessel (72) is provided within the liner (14) and is sealed and thermally coupled to the adapter (18). The fill gas (20) is confined within a gap (78) between an outer surface of the fill vessel (72) and the liner (14) so that the temperature of the liner (14) is not significantly increased during the fill process. An opening (82) is provided in the fill vessel (72) so that the fill gas (20) forces the contained gas (26) within the container (70) into the fill vessel (72) through the opening (82).
Owner:GM GLOBAL TECH OPERATIONS LLC

Filament-reinforced composite thermoplastic pressure vessel fitting assembly and method

A method of forming a fitting assembly in a filament-reinforced pressure vessel, and a pressure vessel having a fitting assembly secured therein. In the method, a first fitting portion is bonded to an inner surface of a thermoplastic liner in a fluid tight manner. A layer of commingled reinforcing filaments and plastic material is applied to an outer surface of the thermoplastic liner to form a vessel wall. A portion of the vessel wall adjacent to the opening bounded by the fluid-tight seal between the first fitting portion and the inner surface of the thermoplastic liner is removed. Then, a second fitting portion is bonded to the first fitting portion so as to define a port for access into the interior of the vessel.
Owner:ENPRESS

Lined pressure vessel and connector therefor

A pressure vessel is disclosed which includes a lower metallic dome having a lower rim portion, and an upper metallic dome having an upper rim portion, a plastic liner disposed within the upper and lower metallic domes, a metallic band disposed between the plastic liner and the upper and lower metallic domes proximate the respective rim portions thereof, and an insulating material disposed between the metallic band and the plastic liner, the metallic band and insulating material protecting the plastic liner from elevated temperatures when the upper and lower rim portions of the metallic domes are welded together. A method of fabricating the pressure vessel and a connector for assembling the pressure vessel are also disclosed.
Owner:AMTROL LICENSING INC

Pressure vessel and process for producing the same

The pressure vessel of the present invention comprises an inner shell capable of serving as a gas barrier and a pressure resistant outer shell provided to cover the inner shell, said outer shell being made of an FRP comprising reinforcing fibers and a resin and is 35 GPa or more in tensile modulus and 1.5% or more in tensile breaking strain. The present invention can provide a pressure vessel not only light in weight,.but also excellent in retaining its internal pressure against repetitive impacts and also excellent in reliability.The process for producing a pressure vessel of the present invention comprises the step of forming a pressure resistant outer shell made of an FRP comprising reinforcing fibers and a resin and is 35 GPa or more in tensile modulus and 1.5% or more in tensile breaking strain, around an inner shell capable of serving as a gas barrier, by a filament winding method or a tape winding method. The present invention can produce a pressure vessel excellent in retaining its internal pressure, excellent in reliability, and light in weight at a low cost.
Owner:TORAY IND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products