Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3726results about "Non-pressured vessels" patented technology

Fluid storage and dispensing system

A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator, e.g., a single-stage or multi-stage regulator, associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g., including a flow control means such as a valve, is arranged in gas / vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas / vapor from the vessel. The fluid in the vessel may be constituted by a liquid that is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. In another aspect, the vessel contains a solid-phase sorbent material having sorbable gas adsorbed thereon, at a pressure in excess of 50 psig. The vessel may have a >1 inch NGT threaded neck opening, to accommodate the installation of an interior regulator.
Owner:ENTEGRIS INC

Transportable pumping unit and method of fracturing formations

A high capacity pumper for liquefied gas incorporates multiple pumping systems distributed in a parallel arrangement and in opposing orientation on a transportable platform such as a trailer. Vaporizers incorporate a burner control system utilizing a primary set of burners operating a baseline and a secondary set of burners providing fine regulating control. A system for fracturing formations is now possible using a minimum number of components including the high capacity pumper, a coiled tubing rig and a source of liquefied gas. An improved manifold for a cryogenic plunger pump includes unions and angled connectors between a supply conduit and each of a plurality of pump heads.
Owner:CENTURY OILFIELD SERVICES

Vaporizer delivery ampoule

A vaporizer delivery system for use in semiconductor manufacturing processes including a plurality of vertically stacked containers for holding a vaporizable source material. Each of the vertically stacked containers includes a plurality of vented protuberances extending into the interior of the each stacked container thereby providing channels for passage of a carrier gas between adjacent vertically stacked containers.
Owner:ENTEGRIS INC

Fluid storage and dispensing system

A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g, including a flow control means such as a valve, is arranged in gas / vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas / vapor from the vessel. The fluid in the vessel may be constituted by a liquid which is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. A phase separator such as a gas / vapor-permeable liquid-impermeable membrane, may be associated with the regulator, as a barrier to flow of liquid into the regulator, when the contained fluid in the vessel is in a liquid state.
Owner:ENTEGRIS INC

Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant

A method and apparatus for increasing the efficiency of a combined cycle generation plant by assisting the vaporization of cold liquid including liquefied natural gas ("LNG") or liquefied petroleum gas (LPG) in a combined cycle power plant. Cold liquid vaporization is assisted by circulating a warm heat transfer fluid to transfer heat to a LNG / LPG vaporizer. The heat transfer fluid is chilled by LNG / LPG cold liquid vaporization and warmed by heat from a gas turbine. The heat transfer fluid absorbs heat from the air intake of a gas turbine and from a secondary heat transfer fluid circulating in a combined cycle power plant. Chilling the gas turbine air intake densifies the air and increases the gas turbine output. Chilling the steam condenser cooling water increases steam turbine output. The effects of chill recovery is higher output and better efficiency of the combined cycle plant.
Owner:BECHTEL CORP

Vaporizer delivery ampoule

A vaporizer delivery system for use in semiconductor manufacturing processes including a plurality of vertically stacked containers for holding a vaporizable source material. Each of the vertically stacked containers includes a plurality of vented protuberances extending into the interior of the each stacked container thereby providing channels for passage of a carrier gas between adjacent vertically stacked containers.
Owner:ENTEGRIS INC

Liquified natural gas (LNG) fueled combined cycle power plant and a (LNG) fueled gas turbine plant

A process and system which improves the capacity and efficiency of a power plant. A LNG supply system fuels the plant. Gasified LNG in a combustor mixes with the air from an air compressor to provide the hot combustion gas for a gas turbine. The expanding LNG is used to chill a heat exchange fluid, e.g. water, which heat exchange fluid cools and densifies the intake air for the air compressor. Subsequently, the heat exchange fluid is used in another heat exchange step and is then re-chilled and recycled to cool and densify the intake air.
Owner:SUEZ LNG NA

Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating

A method of passivating the interior surface of a gas storage vessel to protect the surface against corrosion. The interior surface of the vessel is first dehydrated and then evacuated. A silicon hydride gas is introduced into the vessel. The vessel and silicon hydride gas contained therein are heated and pressurized to decompose the gase. A layer of silicon is deposited on the interior surface of the vessel. The duration of the silicon depositing step is controlled to prevent the formation of silicon dust in the vessel. The vessel is then purged with an inert gas to remove the silicon hydride gas. The vessel is cycled through the silicon depositing step until the entire interior surface of the vessel is covered with a layer of silicon. The vessel is then evacuated and cooled to room temperature.
Owner:SILCOTEK CORP

Energy storage and generation

The present invention concerns systems for storing energy and using the stored energy to generate electrical energy or drive a propeller (505). In particular, the present invention provides a method of storing energy comprising: providing a gaseous input, producing a cryogen from the gaseous input; storing the cryogen; expanding the cryogen; using the expanded cryogen to drive a turbine (320) and recovering cold energy from the expansion of the cryogen. The present invention also provides a cryogenic energy storage system comprising: a source of cryogen; a cryogen storage facility (370); means for expanding the cryogen; a turbine (320) capable of being driven by the expanding cryogen; and means (340, 350) for recovering cold energy released during expansion of the cryogen.
Owner:HIGHVIEW ENTERPRISES LTD

Hydrogen handling or dispensing system

Systems for handling and / or dispensing hydrogen or a mixture of fuels containing hydrogen gas including refueling stations for hydrogen-powered vehicles. Pure hydrogen or various mixtures ratios of hydrogen and CNG may be dispensed. Hydrogen handling equipment may include a hydrogen generator, a pressurizing apparatus or compressor, pressure vessels, piping, valves, vent pipes, and / or a dispenser. Substantially vertical orientation of pressure vessels may reduce the amount of land required and facilitate installation in urban environments. Pressurization may take place before hydrogen generation to reduce the power required for pressurization. Safety features include enclosures and surrounding walls that lean away from the equipment. Any leaking hydrogen, fires, or explosions may be contained and / or directed upward, protecting human life and property. Systems may be shop assembled and certified.
Owner:ARIZONA PUBLIC SERVICE

Parameter monitoring and control for an electric driven hydraulic fracking system

An electric driven hydraulic fracking system is disclosed. A pump configuration includes the single VFD, the single shaft electric motor, and the single hydraulic pump mounted on the single pump trailer. A controller associated with the single VFD and is mounted on the single pump trailer. The controller monitors operation parameters associated with an operation of the electric driven hydraulic fracking system as each component of the electric driven hydraulic fracking system operates to determine whether the operation parameters deviate beyond a corresponding operation parameter threshold. Each of the operation parameters provides an indicator as to an operation status of a corresponding component of the electric driven hydraulic fracking system. The controller initiates corrected actions when each operation parameter deviates beyond the corresponding operation threshold. Initiating the corrected actions when each operation parameter deviates beyond the corresponding operation threshold maintains the operation of the electric driven hydraulic fracking system.
Owner:NAT SERVICE ALLIANCE HOUSTON LLC

Surfactant process for promoting gas hydrate formation and application of the same

This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
Owner:MISSISSIPPI STATE UNIVERSITY

Natural gas hydrate and method for producing same

A method for the production of the natural gas hydrate characterized by the steps of: combining natural gas and water to form a natural-gas water system and an agent adapted to reduce the natural gas-water interfacial tension to form a natural-gas water-agent system, allowing the natural gas-water-agent system to reach equilibrium at elevated pressure and ambient temperature and reducing the temperature of the natural gas-water-agent system to initiate the formation of the natural gas hydrate.
Owner:METASOURCE

Liquefied natural gas floating storage regasification unit

An offshore liquefied natural gas floating storage regasification unit that may receive, store, and process liquefied natural gas from carriers. A floating storage regasification unit may include transfer equipment to offload liquefied natural gas from a carrier, a first mooring system to provide for mooring of a floating storage regasification unit at a location in a body of water, a second mooring system to provide for mooring a carrier to the floating storage regasification unit, and combinations thereof. A portion of the floating storage regasification unit may be composed of a double-hull containment structure.
Owner:SHELL OIL CO

Apparatus and method for flowing compressed fluids into and out of containment

Methods for loading a compressed fluid, such as natural gas, into and discharging the compressed fluid out of containment are provided. The compressed fluid is injected into a bottom portion of a container system for storage and / or transport until a target pressure is reached after which gas is withdrawn from an upper portion of the container system at a rate to maintain the target pressure while the compressed fluid is injected in the bottom portion. The compressed fluid is cooled through an expansion valve and by refrigerated chillers or by injecting a cold liquid of the same chemical composition as the compressed fluid, such as liquid natural gas, into the compressed fluid prior to injection into the container system. Withdrawal or discharge from the container system to a receiving facility begins with blow down from the bottom portion of the container system without a displacement fluid and continues until pressure falls below an acceptable differential pressure. The discharge stream is passed through a separator and a light gas from the separator is pressurized and injected into an upper portion of the container system to drive the compressed fluid out the bottom. The light gas is pressurized using either a compressor or a heated tank system, where two vessels operate in parallel, trapping and heating the light gas and then discharging to the container system from one while filling the other and alternating the operation between the two.
Owner:WHITE CHARLES N +1

Portable fuel cartridge for fuel cells

Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. The refillable system comprises a hydrogen fuel source refiner that includes the mating connector and provides the hydrogen fuel source to the storage device. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision to the receiving device for a limited time.
Owner:ULTRACELL LLC

Methods and Configurations of Boil-off Gas Handling in LNG Regasification Terminals

InactiveUS20110056238A1Stable storage tank pressure controlStable controlSolidificationLiquefactionProcess engineeringWobbe index
A LNG storage and regasification plant includes a reliquefaction unit in which boil-off vapors from the storage tanks are re liquefied and recycled back to the LNG storage tanks for tank pressure and Wobbe index control. Preferably, LNG cold is used for reliquefaction and operational flexibility is achieved by feeding a portion of the pressurized boil-off gas to a fuel gas header and / or to be recondensed by the sendout LNG.
Owner:FLUOR TECH CORP

Container with material coating having barrier effect and method and apparatus for making same

The invention provides a container such as a bottle or flask, made heterogeneously from a material with a barrier effect and a polymer material, characterised in that the material with a barrier effect is an amorphous carbon material with a polymer tendency which is applied as a coating on a substrate of polymer material.
Owner:SIDEL PARTICIPATIONS SAS

Heat recovery system

A heat recovery system comprising: an LNG warmer; at least one item of equipment requiring cooling and thereby generating waste heat; a heat exchanger arranged to provide heat exchange between the LNG warmer and the waste heat, whereby said waste heat can be used to provide warming for the LNG; wherein said heat exchanger is a closed loop heat exchange means, whereby the heat exchange fluids in said heat exchanger are substantially retained within the heat exchanger during operation of the system. This enables the system to be operated offshore without needing to use the surrounding seawater to provide cooling for the waste heat from the equipment.
Owner:BHP BILLITON INNOVATION PTY LTD

Liquid and compressed natural gas dispensing system

A system dispenses both liquid natural gas (LNG) and compressed natural gas (CNG). A bulk tank contains a supply of LNG which is pumped to a smaller storage tank. After the storage tank is refilled, LNG from the bulk tank is pumped to a vaporizer so that CNG is produced. The CNG may be routed to the LNG in the storage tank to condition it. It is also used to recharge a pressurizing cylinder that is placed in communication with the head space of the storage tank when it is desired to rapidly dispense LNG to a vehicle. A bank of cascaded storage cylinders alternatively may receive CNG from the vaporizer for later dispensing through the system CNG dispenser. The CNG from the vaporizer may also be dispensed directly via the system CNG dispenser.
Owner:CHART INC

System and method for liquid air production, power storage and power release

Systems and methods for storing and releasing energy comprising directing inlet air into a vertical cold flue assembly having an air inlet at or near its top into which inlet air is directed and an exit at or near its bottom. The air is cooled within the cold flue assembly and a portion of moisture is removed from the air within the cold flue assembly. The air is directed out the exit of the cold flue assembly and compressed. The remaining moisture is substantially removed and the carbon dioxide is removed from the air by adsorption. The air is cooled in a main heat exchanger such that it is substantially liquefied using refrigerant loop air, the refrigerant loop air generated by a refrigerant loop process. The substantially liquefied air is directed to a storage apparatus. The refrigerant loop air is cooled by a mechanical chiller and by a plurality of refrigerant loop air expanders. In energy release mode, working loop air warms the released liquid air such that the released liquid air is substantially vaporized, and the released liquid air cools the working loop air such that the working loop air is substantially liquefied. A portion of the released liquid air is directed to the at least one generator and used as bearing air for the at least one generator. The substantially vaporized air is directed to a combustion chamber and combusted with a fuel stream. Combustion gas may be directed from the combustion chamber to at least one expander and expanded in the expander, the expanded combustion gas split into a first portion and a second portion, the first portion being relatively larger than the second portion. The first portion may be directed to a first heat exchanger, and the second portion may be directed to a second heat exchanger such that the second portion heats and substantially vaporizes the released liquid air.
Owner:EXPANSION ENERGY

Liquefied natural gas structure

An offshore liquefied natural gas structure may receive, store, and process liquefied natural gas from carriers. A structure may be a gravity base structure. A structure may include a system of ballast storage areas, transfer equipment to offload liquefied natural gas from a carrier, docking equipment to allow direct mooring with carriers, platforms to elevate equipment, water intake systems to provide water to the structure, wave deflectors, and / or projections extending from a bottom of the structure. A portion of the structure may be composed of lightweight concrete. Pipelines may be coupled to the structure to export processed natural gas onshore. Living quarters, flare towers, and export line metering equipment may be included on the structure.
Owner:SHELL OIL CO

Fluid storage and dispensing system featuring interiorly disposed and exteriorly adjustable regulator for high flow dispensing of gas

A fluid storage and dispensing system including a vessel for holding a fluid, an adjustable set point pressure regulator in the interior volume of the vessel, a dispensing assembly in fluid flow communication with the regulator for dispensing fluid at a pressure determined by the set point of the regulator, and an adjusting assembly exterior to the vessel for in situ adjustment of the set point of the internally disposed regulator. By such arrangement, fluid storage and dispensing operations can have respectively differing regulator set point pressures, as for example a sub-atmospheric pressure set point for storage and a super-atmospheric pressure set point for dispensing.
Owner:ENTEGRIS INC

Method and apparatus for delivering a high pressure gas from a cryogenic storage tank

A cryogenic tank assembly has a pump which discharges into an accumulator which is located in the cryogenic storage area. This reduces the space required for the device as well as the functioning of the device. The high pressure fluid in the accumulator remains at a cryogenic temperature. The system may also include a heater to deliver high pressure gas form the liquid storage volume.
Owner:WESTPORT FUEL SYST CANADA INC +1

System for stacking archive boxes including a fire-resistant drywall support shell

A system for stacking fire-resistant archive boxes on top of one another is provided. Each of the archive boxes comprise an outer shell, an inner shell disposed within the outer shell, a drywall support shell, and a lid. The inner shell has an opening defining a storage compartment, and is spaced apart from the outer shell defining a cavity therebetween. The inner shell includes a bottom wall and side walls. The drywall support shell is disposed within the cavity and surrounds a substantial portion of the inner shell. The lid is configured to be disposed over the opening in the inner shell to selectively enclose the storage compartment. The drywall support shell of the upper archive box is substantially aligned with the drywall support shell of the lower archive box whereby the lower archive box is supportive of the upper archive box.
Owner:SENTRY SAFE

Container and collar with attaching means

A container (210) for holding granular / powdered material and formed by a top wall (212), a bottom wall (214), a front wall (216), a rear wall (218), a first side wall (220), and a second side wall (222). A removable lid (D) is interiorly mounted with a scoop (32) and is hinged to a collar (300) that includes a sealing gasket (330). The collar (300) mounts to the walls of the container (210). A sealing wall 240 of the lid (D) cooperates with the gasket (330) to prevent the contents from spilling. The container (210) incorporates sealing features, a geometry for container wall junctions (50) and a junction congruent scoop (32) enabling easy access to the contents, and a strength improving receptacle (280) with indentations (290) that interlock with flex clips (310) of a J-shaped collar (300), and which accommodate wide tolerance variations between the collar (300) and receptacle (280).
Owner:ABBOTT LAB INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products