Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

50517 results about "Product gas" patented technology

Product gas meaning, product gas definition | English Cobuild dictionary. product. 1 n-count A product is something that is produced and sold in large quantities, often as a result of a manufacturing process.

Substrate processing apparatus and method for manufacturing semiconductor device

ActiveUS20080264337A1Suppress agitationForeign matterLiquid surface applicatorsVacuum evaporation coatingForeign matterProduct gas
A substrate processing apparatus and a method for manufacturing a semiconductor device whereby foreign matter can be prevented from being adsorbed on the substrate, by suppressing agitation of foreign matter present in the processing chamber. The substrate processing apparatus comprises a processing chamber for processing a substrate; a processing gas feeding line for feeding a processing gas into the processing chamber; an inert gas feeding line for feeding an inert gas into the processing chamber; an inert gas vent line provided in the inert gas feeding line, for exhausting the inert gas fed into the inert gas feeding line without feeding the inert gas into the processing chamber; a first valve provided in the inert gas feeding line, on a downstream side of a part where the inert gas vent line is provided in the inert gas feeding line; a second valve provided in the inert gas vent line; and an exhaust line that exhausts an inside of the processing chamber.
Owner:KOKUSA ELECTRIC CO LTD

Method for fabricating carbon nanotube yarn

A method of fabricating a long carbon nanotube yarn includes the following steps: (1) providing a flat and smooth substrate; (2) depositing a catalyst on the substrate; (3) positioning the substrate with the catalyst in a furnace; (4) heating the furnace to a predetermined temperature; (5) supplying a mixture of carbon containing gas and protecting gas into the furnace; (6) controlling a difference between the local temperature of the catalyst and the furnace temperature to be at least 50° C.; (7) controlling the partial pressure of the carbon containing gas to be less than 0.2; (8) growing a number of carbon nanotubes on the substrate such that a carbon nanotube array is formed on the substrate; and (9) drawing out a bundle of carbon nanotubes from the carbon nanotube array such that a carbon nanotube yarn is formed.
Owner:HON HAI PRECISION IND CO LTD +1

Combined steam and gas turbine engine with magnetic transmission

In a combined steam and gas turbine engine cycle, a combustion chamber is made durable against high pressure and enlarged in length to increase the operation pressure ratio, without exceeding the heat durability temperature of the system while increasing the fuel combustion gas mass flow four times as much as the conventional turbine system and simultaneously for greatly raising the thermal efficiency of the system and specific power of the combined steam and gas turbine engine.Water pipes and steam pipes are arranged inside the combustion chamber so that the combustion chamber can function as a heat exchanger and thereby convert most of the combustion thermal energy into super-critical steam energy for driving a steam turbine and subsequently raising the operation pressure ratio and the thermal efficiencies of the steam turbine cycle and gas turbine cycle. The combustion gas mass flow can be also increased by four times as much as the conventional turbine system (up to the theoretical air to fuel ratio) and the thermal efficiency and the specific power of the gas turbine cycle are considerably increased.Further, the thermal efficiency of the combined system is improved by installing a magnetic friction power transmission system to transmit the power of the system to outer loads.
Owner:TANIGAWA HIROYASU +1

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more injection and production boreholes, which may include horizontal boreholes, or a cyclic operation whereby both injection and production occur in the same boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing or related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.
Owner:WORLD ENERGY SYST

Free-standing and aligned carbon nanotubes and synthesis thereof

One or more highly-oriented, multi-walled carbon nanotubes are grown on an outer surface of a substrate initially disposed with a catalyst film or catalyst nano-dot by plasma enhanced hot filament chemical vapor deposition of a carbon source gas and a catalyst gas at temperatures between 300° C. and 3000° C. The carbon nanotubes range from 4 to 500 nm in diameter and 0.1 to 50 μm in length depending on growth conditions. Carbon nanotube density can exceed 104 nanotubes / mm2. Acetylene is used as the carbon source gas, and ammonia is used as the catalyst gas. Plasma intensity, carbon source gas to catalyst gas ratio and their flow rates, catalyst film thickness, and temperature of chemical vapor deposition affect the lengths, diameters, density, and uniformity of the carbon nanotubes. The carbon nanotubes of the present invention are useful in electrochemical applications as well as in electron emission, structural composite, material storage, and microelectrode applications.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Method of and apparatus for tunable gas injection in a plasma processing system

A method of and apparatus for providing tunable gas injection in a plasma processing system (10, 10′). The apparatus includes a gas injection manifold (50) having a pressurizable plenum (150) and an array of adjustable nozzle units (250), or an array of non-adjustable nozzles (502, 602), through which gas from the plenum can flow into the interior region (40) of a plasma reactor chamber (14) capable of containing a plasma (41). The adjustable nozzle units include a nozzle plug (160) arranged within a nozzle bore (166). A variety of different nozzle units are disclosed. The nozzle plugs are axially translatable to adjust the flow of gas therethrough. In one embodiment, the nozzle plugs are attached to a plug plate (154), which is displacable relative to an injection plate (124) via displacement actuators (170) connecting the two plates. The displacement actuators are controlled by a displacement actuator control unit (180), which is in electronic communication with a plasma processing system control unit (80). The gas flow into the chamber interior region is preferably controlled by monitoring the pressure in the plenum and in the chamber and adjusting the nozzle units accordingly. Where the nozzle units are not adjustable, a portion of the nozzles are sized to a first flow condition, and another portion of the nozzles are sized to a second flow condition.
Owner:TOKYO ELECTRON LTD

Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium

In a film deposition apparatus which deposits a thin film on a substrate by supplying first and second reactive gases in a vacuum chamber, there are provided a turntable, a first reactive gas supplying portion and a second reactive gas supplying portion which are arranged to extend from circumferential positions of the turntable to a center of rotation of the turntable, a first separation gas supplying portion arranged between the first and second reactive gas supplying portions, a first space having a first height and including the first separation gas supplying portion, a second space having a second height and including the second reactive gas supplying portion, a third space having a height lower than the first height and the second height and including the first separation gas supplying portion, a position detecting unit detecting a rotation position of the turntable, and a detection part arranged at a circumferential portion of the turntable and detected by the position detecting unit.
Owner:TOKYO ELECTRON LTD

Method of Forming A Metallic Oxide Film Using Atomic Layer Deposition

A method of forming a metallic oxide film using atomic layer deposition includes loading a substrate into a reactor, supplying a metallic source gas into the reactor and absorbing the metallic source gas onto the substrate, purging the remaining metallic source gas that does not react, with the substrate, and directly producing plasma of an N-group-containing oxide reactant gas in the reactor.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus for depositing a uniform silicon film and methods for manufacturing the same

Methods and apparatus having a gradient spacing created between a substrate support assembly and a gas distribution plate for depositing a silicon film for solar cell applications are provided. In one embodiment, an apparatus for depositing films for solar cell applications may include a processing chamber, a substrate support disposed in the processing chamber and configured to support a quadrilateral substrate thereon, and a gas distribution plate disposed in the processing chamber above the substrate support, wherein a bottom surface of the gas distribution plate has a perimeter that includes edges and corners, and wherein the corners of the gas distribution plate are closer to the substrate support than the edges of the gas distribution plate.
Owner:APPLIED MATERIALS INC

Mixed mode pulsing etching in plasma processing systems

A method for processing substrate in a chamber, which has at least one plasma generating source, a reactive gas source for providing reactive gas into the interior region of the chamber, and a non-reactive gas source for providing non-reactive gas into the interior region, is provided. The method includes performing a mixed-mode pulsing (MMP) preparation phase, including flowing reactive gas into the interior region and forming a first plasma to process the substrate that is disposed on a work piece holder. The method further includes performing a MMP reactive phase, including flowing at least non-reactive gas into the interior region, and forming a second plasma to process the substrate, the second plasma is formed with a reactive gas flow during the MMP reactive phase that is less than a reactive gas flow during the MMP preparation phase. Perform the method steps a plurality of times.
Owner:LAM RES CORP

Method and apparatus for treating article to be treated

A thermal treatment apparatus 1 includes a reaction tube 2 for containing wafers 10 contaminated with organic substances having a heater 12 capable of heating the reaction tube; a first gas supply pipe 13 for carrying oxygen gas into the reaction tube 2; and a second gas supply pipe 14 for carrying hydrogen gas into the reaction tube 2. Oxygen gas and hydrogen gas are supplied through the first gas supply pipe 13 and the second gas supply pipe 14, respectively, into the reaction tube 2, and the heater 12 heats the reaction tube 2 at a temperature capable of activating oxygen gas and hydrogen gas. A combustion reaction occurs in the reaction tube 2 and thereby the organic substances adhering to the wafers 10 are oxidized, decomposed and removed.
Owner:TOKYO ELECTRON LTD

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more vertical injection boreholes and one or more vertical production boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes, or a cyclic operation whereby both injection and production occur in the same vertical boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing, multiple horizontal boreholes extending from vertical boreholes, or other related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.
Owner:WORLD ENERGY SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products