Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

6311results about How to "Improve barrier properties" patented technology

Method for forming metal wiring structure

A method for forming a metal wiring structure includes: (i) providing a multi-layer structure including an exposed wiring layer and an exposed insulating layer in a reaction space; (ii) introducing an —NH2 or >NH terminal at least on an exposed surface of the insulating layer in a reducing atmosphere; (iii) introducing a reducing compound to the reaction space and then purging a reaction space; (iv) introducing a metal halide compound to the reaction space and then purging the reaction space; (v) introducing a gas containing N and H and then purging the reaction space; (vi) repeating steps (iii) to (v) in sequence to produce a metal-containing barrier layer; and (vii) forming a metal film on the metal-containing barrier layer.

Systems for Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas

An atomic layer deposition system and method utilizing radicals generated from a high-density mixed plasma for deposition is disclosed. A high-quality oxide or oxynitride can be deposited by exposing a substrate to a first precursor which is adsorbed onto the substrate during a first phase of one deposition cycle. After purging the deposition chamber, the substrate is exposed to a second precursor which includes oxygen radicals and krypton ions formed from the high-density mixed plasma. The ions and radicals are formed by introducing a radical generating feed gas (e.g., O2) and an ion generating feed gas into a plasma chamber and exciting the gases to form the high-density mixed plasma. The radicals and ions are then introduced to the substrate where they react with the first precursor to deposit a layer of the desired film. Krypton is preferably used as the ion generating feed gas because the metastable states of krypton lead to an efficient dissociation of oxygen into oxygen radicals when compared with other inert gases.

Smokeless tobacco products and processes

An improved pouching machine is provided. The improved pouching machine comprises a feed hopper with a first and a second end and a feed screw with a plurality of pins extending from the circumference. The feed screw is connected to a first shaft and the first shaft is connected to a motor to rotate the first shaft. An agitator screw is positioned adjacent to the feed screw and has a plurality of pins extending from the circumference. The agitator screw is connected to a second shaft.

Methods and compositions for reducing or eliminating post-surgical adhesion formation

The present invention relates to a method for reducing adhesions associated with post-operative surgery. The present method comprises administering or affixing a polymeric composition preferably comprising chain extended, coupled or crosslinked polyester / poly(oxyalkylene) ABA triblocks or AB diblocks having favorable EO / LA ratios to a site in the body which has been subjected to trauma, e.g. by surgery, excision or inflammatory disease. In the present invention, the polymeric material provides a barrier to prevent or reduce the extent of adhesions forming.

Articles containing nanofibers for use as barriers

The present invention is directed to articles comprising nanofibers. Preferred articles include diapers, training pants, adult incontinence pads, catamenials products such as feminine care pads and pantiliners, tampons, personal cleansing articles, personal care articles, and personal care wipes including baby wipes, facial wipes, body wipes, and feminine wipes. The nanofiber webs can be used as a barrier, wipe, absorbent material, and other uses. The nanofibers, having a diameter of less than 1 micron, must comprise a significant number of the fibers in at least one nanofiber layer of the nonwoven web. The nonwoven web may have a hydrohead to basis weight ratio of greater than about 10 mbar / gsm. The nanofibers may be produced from a melt film fibrillation process.

Nanoparticulate encapsulation barrier stack

A barrier stack for encapsulating a moisture and / or oxygen sensitive electronic device is provided. The barrier stack comprises a multilayer film having at least one barrier layer having low moisture and / or oxygen permeability, and at least one sealing layer arranged to be in contact with a surface of the barrier layer, wherein the sealing material comprises reactive nanoparticles capable of interacting with moisture and / or oxygen, thereby retarding the permeation of moisture and / or oxygen through defects present in the barrier layer.

Smokeless tobacco products and processes

A container for a smokeless tobacco product is provided. A container for smokeless tobacco comprises a lid and a corresponding bottom piece having an outside wall and at least one dividing wall extending between opposite sides of the outside wall and dividing the bottom piece into a plurality of compartments. A seal is removably positioned over each compartment.

Semiconductor device and manufacturing method thereof

A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products