Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1894 results about "Metal halides" patented technology

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. Covalently bonded metal halides may be discrete molecules, such as uranium hexafluoride, or they may form polymeric structures, such as palladium chloride.

Solid precursor-based delivery of fluid utilizing controlled solids morphology

Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
Owner:ENTEGRIS INC

Selective deposition to form air gaps

A method for depositing a film to form an air gap within a semiconductor device is disclosed. An exemplary method comprises pulsing a metal halide precursor onto the substrate and pulsing an oxygen precursor onto a selective deposition surface. The method can be used to form an air gap to, for example, reduce a parasitic resistance of the semiconductor device.
Owner:ASM IP HLDG BV

Deposition of metal borides

A method for depositing a metal boride film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a boron compound precursor onto the substrate. A reaction between the metal halide precursor and the boron compound precursor forms a metal boride film. Specifically, the method discloses forming a tantalum boride (TaB2) or a niobium boride (NbB2) film.
Owner:ASM IP HLDG BV

Deposition of metal borides

A method for depositing a metal boride film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a boron compound precursor onto the substrate. A reaction between the metal halide precursor and the boron compound precursor forms a metal boride film. Specifically, the method discloses forming a tantalum boride (TaB2) or a niobium boride (NbB2) film.
Owner:ASM IP HLDG BV

Method of Producing Transition Metal Dichalcogenide Layer

Method of producing one or more transition metal dichalcogenide (MX2) layers on a substrate, comprising the steps of: obtaining a substrate having a surface and depositing MX2 on the surface using ALD deposition, starting from a metal halide precursor and a chalcogen source (H2X), at a deposition temperature of about 300° C. Suitable metals are Mo and W, suitable chalcogenides are S, Se and Te. The substrate may be (111) oriented. Also mixtures of two or more MX2 layers of different compositions can be deposited on the substrate, by repeating at least some of the steps of the method.
Owner:INTERUNIVERSITAIR MICRO ELECTRONICS CENT (IMEC VZW) +1

Nmos metal gate materials, manufacturing methods, and equipment using CVD and ald processes with metal based precursors

Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. In one embodiment, a method for processing a substrate is provided which includes depositing a dielectric material having a dielectric constant greater than 10, forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.
Owner:APPLIED MATERIALS INC

Deposition of metal borides and silicides

A method for depositing a metal film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a reducing precursor onto the substrate. A reaction between the metal halide precursor and the reducing precursor forms a metal film. Specifically, the method discloses forming a metal boride or a metal silicide film.
Owner:ASM IP HLDG BV

Deposition of metal borides

A method for depositing a metal film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a decaborane precursor onto the substrate. A reaction between the metal halide precursor and the decaborane precursor forms a metal film, specifically a metal boride.
Owner:ASM IP HLDG BV

Selective film deposition method to form air gaps

A method for depositing a film to form an air gap within a semiconductor device is disclosed. An exemplary method comprises pulsing a metal halide precursor onto the substrate and pulsing an oxygen precursor onto a selective deposition surface. The method can be used to form an air gap to, for example, reduce a parasitic resistance of the semiconductor device.
Owner:ASM IP HLDG BV

Method and apparatus for germanium tin alloy formation by thermal CVD

A method and apparatus for forming semiconductive semiconductor-metal alloy layers is described. A germanium precursor and a metal precursor are provided to a chamber, and an epitaxial layer of germanium-metal alloy, optionally including silicon, is formed on the substrate. The metal precursor is typically a metal halide, which may be provided by evaporating a liquid metal halide, subliming a solid metal halide, or by contacting a pure metal with a halogen gas. A group IV halide deposition control agent is used to provide selective deposition on semiconductive regions of the substrate relative to dielectric regions. The semiconductive semiconductor-metal alloy layers may be doped, for example with boron, phosphorus, and / or arsenic. The precursors may be provided through a showerhead or through a side entry point, and an exhaust system coupled to the chamber may be separately heated to manage condensation of exhaust components.
Owner:APPLIED MATERIALS INC

Volatile noble metal organometallic complexes

InactiveUS20050033075A1Reduce Van der Waals interactionBoiling and sublimation temperatureFurnaces without endless coreRuthenium organic compoundsIridiumIodide
A series of noble metal organometallic complexes of the general formula (I): MLaXb(FBC)c, wherein M is a noble metal such as iridium, ruthenium or osmium, and L is a neutral ligand such as carbonyl, alkene or diene; X is an anionic ligand such as chloride, bromide, iodide and trifluoroacetate group; and FBC is a fluorinated bidentate chelate ligand such as beta diketonate, beta-ketoiminate, amino-alcoholate and amino-alcoholate ligand, wherein a is an integer of from zero (0) to three (3), b is an integer of from zero (0) to one (1) and c is an 10 integer of from one (1) to three (3). The resulting noble metal complexes possess enhanced volatility and thermal stability characteristics, and are suitable for chemical vapor deposition(CVD) applications. The corresponding noble metal complex is formed by treatment of the FBC ligand with a less volatile metal halide. Also disclosed are CVD methods for using the noble metal complexes as source reagents for deposition of noble metal-containing films such as Ir, Ru and Os, or even metal oxide film materials IrO2, OsO2 and RuO2.
Owner:NATIONAL TSING HUA UNIVERSITY +1

Method and apparatus for the selective deposition of epitaxial germanium stressor alloys

A method and apparatus for forming heterojunction stressor layers is described. A germanium precursor and a metal precursor are provided to a chamber, and an epitaxial layer of germanium-metal alloy formed on the substrate. The metal precursor is typically a metal halide, which may be provided by subliming a solid metal halide or by contacting a pure metal with a halogen gas. The precursors may be provided through a showerhead or through a side entry point, and an exhaust system coupled to the chamber may be separately heated to manage condensation of exhaust components.
Owner:APPLIED MATERIALS INC

Plasma assisted hvpe chamber design

Embodiments of the invention disclosed herein generally relate to a hydride vapor phase epitaxy (HVPE) deposition chamber that utilizes a plasma generation apparatus to form an activated precursor gas that is used to rapidly form a high quality compound nitride layer on a surface of a substrate. In one embodiment, the plasma generation apparatus is used to create a desirable group-III metal halide precursor gas that can enhance the deposition reaction kinetics, and thus reduce the processing time and improve the film quality of a formed group-III metal nitride layer. In addition, the chamber may be equipped with a separate nitrogen containing precursor activated species generator to enhance the activity of the delivered nitrogen precursor gases.
Owner:APPLIED MATERIALS INC

Thermoplastic vulcanizates and process for making the same

A process for forming a thermoplastic vulcanizate compromising the steps of dynamically vulcanizing a rubber within a blend that comprises the rubber and a thermoplastic polymer, where said step of vulcanizing is carried out by using a phenolic resin in the presence of a catalyst system formed by combining a metal halide and a metal carboxylate. Also, a thermoplastic vulcanizate having low moisture pick-up with a technologically useful cure.
Owner:ADVANCED ELASTOMER SYST LP

Three-stage electronic ballast for metal halide lamps

A three-stage electronic ballast for metal halide lamps mainly comprises a step-up converter, a step-down converter and a full-bridge DC-AC converter, wherein the step-down converter operates an inductor in a continuous boundary current mode to achieve reducing power loss and enhancing efficiency. Equipped with a micro processor, the electronic ballast further possesses the function of power regulation. The electronic ballast can be added with various protective functions without complex control circuits and sensing elements, thereby becoming a high-quality and low-cost electronic ballast for metal halide lamps.
Owner:LIGTEK ELECTRONICS

Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and / or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.
Owner:BATTELLE MEMORIAL INST

Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors

The invention provides alkaline compositions useful in the microelectronics industry for stripping or cleaning semiconductor wafer substrates by removing photoresist residues and other unwanted contaminants. The compositions contain (a) one or more bases and (b) one or more metal corrosion inhibiting metal halides of the formula: WzMXy where M is a metal selected from the group Si, Ge, Sn, Pt, P, B, Au, Ir, Os, Cr, Ti, Zr, Rh, Ru, and Sb; X is a halide selected from F, Cl, Br and I; W is selected from H, to an alkali or alkaline earth metal, and a metal ion-free hydroxide base moiety; y is a numeral of from 4 to 6 depending on the metal halide; and z is a numeral of 1, 2 or 3.
Owner:AVANTOR PERFORMANCE MATERIALS INC

Partially and fully surface-enabled metal ion-exchanging energy storage devices

A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from (A) non-Li alkali metals; (B) alkaline-earth metals; (C) transition metals; (D) other metals such as aluminum (Al); or (E) a combination thereof; and wherein at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with said electrolyte, and wherein the operation of the battery device does not involve the introduction of oxygen from outside the device and does not involve the formation of a metal oxide, metal sulfide, metal selenide, metal telluride, metal hydroxide, or metal-halogen compound. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.
Owner:GLOBAL GRAPHENE GRP INC

Mercury-free metal halide lamp

Lighting system, comprising a mercury-free metal halide lamp with a light yield of at least 75 lm / W and a color rendition index of at least 75 and an electronic ballast, the electronic ballast impressing a square-wave power supply on the lamp and keeping the power constant. The filling comprises the following components: a buffer gas which also acts as starting gas to start the lamp, a voltage gradient generator, comprising at least one metal halide which vaporizes readily and which is chiefly (by more than 50%) responsible for generating a voltage gradient which corresponds approximately to that of mercury, and a light generator comprising one metal and / or one metal halide.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Method for mercury removal from flue gas streams

The method for removing mercury from a flue gas stream of the present invention is comprised of first treating a sorbent with a metal halide, and then contacting a sufficient amount of the sorbent with a gas stream for a sufficient amount of time to bind with a desired amount of the mercury in said gas stream. The metal is selected from Groups I and II of the periodic table of the elements. The halide is selected from the group consisting of I, Br, Cl. The metal halide comprises from about 0.5% to 25% by weight of said treated sorbent.
Owner:CALGON CARBON

Ammonothermal process for bulk synthesis and growth of cubic GaN

A method of growing single-crystals of a cubic (zinc blende) form of gallium nitride, the method comprising the steps of: placing into a reaction tube or acid resistant vessel a gallium source, anhydrous ammonia, an acid mineralizer and a metal halide salt selected from the group consisting of alkali metal halides, copper halides, tin halides, lanthanide halides and combinations thereof; closing said reaction tube or vessel; heating said reaction tube; cooling said reaction tube or vessel; and collecting single-crystals of cubic (zinc blende) form of GaN; wherein said reaction tube or vessel has a temperature gradient with a hot zone of at least 250° C., wherein said reaction tube or vessel has a temperature gradient with a cool zone of at least 150° C., and wherein said acid mineralizer has a sufficient concentration to permit chemical transport of GaN in said reaction tube or vessel from said hot zone to said cool zone due to said temperature gradient within said reaction tube or vessel.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Conductive slurry for solar battery front side electrode and production method thereof

The invention relates to a conductive paste for the surface electrode of a solar cell, which comprises conductive metal powders, organic carriers, adhesives, solvents and addition agent, wherein, the conductive paste also comprises additives which are selected from phosphorus pentachloride and one or more VIII group metal halide. The additive in the conductive paste of the invention can help improve the adhesive force between the conductive paste and silicon substrate, and lead adhesion between compounds obtained after electrode sintering and silicon substrate to be more firm; the formed compound does not have cracks and bubbles and the electrode surface is flat and smooth, thus providing the solar cell finally prepared with higher photoelectric conversion efficiency.
Owner:BYD CO LTD

Compositions and methods for removing mercury from mercury-containing fluids

Oxidative sorbents are provided for adsorbing elemental or oxidized mercury from mercury-containing fluids such as flue gas from a coal-burning power utility or the like at a temperature range of about 50 to 350 ° C. The method of preparing and using the oxidative sorbents is also provided. The oxidative sorbent compositions include one or more silicates capable of cation exchange with a plurality of active metal cations and their counter anions. The silicates may include those selected from clays such as montmorillonite, laumonite, bentonite, Mica, vermiculite and kaolinite, and from silica gels, natural and synthetic molecular sieves, zeolites, and ashes from stoker- and pulverized coal-fired boilers. The one or more oxidative metal halides and / or sulfates may be selected from the group consisting of CuCl, CuBr, CuCl2, CuBr2, CuSO4, FeCl2, FeCl3, FeSO4, Fe2(SO4)3, ZnCl2, ZnBr2, NiCl2, and NiSO4. The oxidative sorbents may also include activated carbon.
Owner:U S ENVIRONMENTAL PROTECTION AGENCY UNITED STATES OF AMERICA THE AS REPRESENTED BY THE ADMINISTATOR

Method and apparatus for the zonal transmission of data using building lighting fixtures

This invention relates to the zonal transmission of data by the modulation of the light output of arc lamps or discharge lamps; including the visible or invisible light output of fluorescent lamps, mercury vapor lamps, high or low-pressure sodium lamps, metal-halide based lamps, or other arc or discharge lamps. The method results in an easily installed, easily maintained, and economical to purchase, optical-wave communications system which exploits the existing infrastructure of a building or facility to facilitate the transmission of data in individual zones; thereby facilitating the transmission of wide-area as well as zonal-specific data to compatible receivers, and further facilitating the determination of location of remote devices or users, and the delivery or exchange of information or data, utilizing limited range transmission techniques.
Owner:CONVERGENCE WIRELESS A CALIFORNIA CORP

Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries

Lithium ion battery positive electrode material are described that comprise an active composition comprising lithium metal oxide coated with an inorganic coating composition wherein the coating composition comprises a metal chloride, metal bromide, metal iodide, or combinations thereof. Desirable performance is observed for these coated materials. In particular, the non-fluoride metal halide coatings are useful for stabilizing lithium rich metal oxides.
Owner:IONBLOX INC

Process for the manufacture of 1,3,3,3-tetrafluoropropene

The invention provides an economic process for the manufacture of 1,3,3,3-tetrafluoropropene (HFO-1234ze) by a two stage process. A vapor phase hydrofluorination of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) into 1-chloro-1,3,3,3-tetrafluoropropane (HCFC-244fa) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa) is conducted, followed by the thermal dehydrochlorination of HCFC-244fa and dehydro fluorination of HFC-245fa into HFO-1234ze in the presence of a catalyst which comprises one or more of alkali metal halides, alkaline earth metal halides, halogenated metal oxides, zero oxidation state metals, zinc halides, palladium halides, and activated carbon.
Owner:HONEYWELL INT INC

Preparation of fluorinated olefins via catalytic dehydrohalogenation of halogenated hydrocarbons

A process for making a fluorinated olefin having the step of dehydrochlorinating a hydrochlorofluorocarbon having at least one hydrogen atom and at least one chlorine atom on adjacent carbon atoms, preferably carried out in the presence of a catalyst selected from the group consisting of (i) one or more metal halides, (ii) one or more halogenated metal oxides, (iii) one or more zero-valent metals / metal alloys, (iv) a combination of two or more of the foregoing.
Owner:HONEYWELL INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products