Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2807 results about "Metal hydroxide" patented technology

Metal hydroxides are hydroxides of metals. Metal hydroxides are also known as strong bases. Many common metal hydroxides are made up from hydroxide ions and the ion of the particular metal that it is made up of. Example: When NaOH (sodium hydroxide) is dissolved in water, it forms OH ions and Na ions. Metal hydroxides ionize completely when dissolved, so that is why they are known as strong bases. Their pH is above 7, labeling them as bases. Since ions conduct electricity, metal hydroxides carry electricity very well when they are dissolved.

Composition, method of making, and treatment of wood with an injectable wood preservative slurry having biocidal particles

A method of preserving wood includes injecting into the wood an effective amount of a aqueous wood-injectable biocidal slurry, said a wood-injectable biocidal slurry containing dispersants and sub-micron biocidal particles selected from at least one of the following classes: 1) a plurality of particles containing at least 25% by weight of a solid phase of sparingly soluble salts selected from copper salts, nickel salts, tin salts, and/or zinc salts; 2) a plurality of particles containing at least 25% by weight of a solid phase of sparingly soluble metal hydroxides selected from copper hydroxide, nickel hydroxide, tin hydroxide, and/or zinc hydroxide; 3) a plurality of particles containing at least 25% by weight of a solid phase comprising a substantially-insoluble organic biocide selected from triazoles, chlorothalonil, iodo-propynyl butyl carbamate, copper-8-quinolate, fipronil, imidacloprid, bifenthrin, carbaryl, strobulurins, and indoxacarb; 4) a plurality of particles containing on the outer surface thereof a substantially-insoluble organic biocide; 5) a plurality of particles containing a solid phase of a biocidal, partially or fully glassified composition comprising at least one of Zn, B, Cu, and P. The particles may advantageously contain metallic copper, a leachability barrier, pigments, dyes, or other adjuvants disposed on the outer surface thereof.
Owner:OSMOSE

Microspheres capable of binding radioisotopes, optionally comprising metallic microparticles, and methods of use thereof

One aspect of the present invention relates to a microsphere, comprising a hydrophilic polymer comprising a plurality of pendant anionic groups; a transition-metal, lanthanide or group 13-14 metal oxide, polyoxometalate or metal hydroxide or combination thereof; and a first radioisotope that emits a therapeutic β-particle. In certain embodiments, the microsphere further comprsies a second radioisotope that emits a diagnostic γ-ray; wherein the atomic number of the first radioisotope is not the same as the atomic number of the second radioisotope. In certain embodiments, the microsphere is composed of polymer impregnated with zirconia bound to 32p as the source of the therapeutic β-emissions and 67Ga as the source of the diagnostic γ-emissions. Another aspect of the present invention relates to the preparation of a microsphere impregnated with a radioisotope that emits therapeutic β-particles and a radioisotope that emits diagnostic β-emitting radioisotope and a γ-emitting radioistope; wherein the atomic number of the first radioisotope is not the same as the atomic number of the second radioisotope. In certain embodiments, said microspheres are administered to the patient through a catheter. In another embodiment, the microsphere is combined with the radioisotopes at the site of treatment.
Owner:BIOSPHERE MEDICAL INC

Process for producing fluoroolefins

A process for producing a fluoroolefin of the formula: CF.sub.3CY.dbd.CX.sub.nH.sub.p wherein Y is a hydrogen atom or a halogen atom (i.e., fluorine, chlorine, bromine or iodine); X is a hydrogen atom or a halogen atom (i.e., fluorine, chlorine, bromine or iodine); n and p are integers independently equal to 0, 1 or 2, provided that (n+p)=2; comprising contacting, in the presence of a phase transfer catalyst, a compound of the formula: CF.sub.3C(R.sup.1.sub.aR.sup.2.sub.b) C(R.sup.3.sub.cR.sup.4.sub.d), wherein R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are independently a hydrogen atom or a halogen selected from the group consisting of fluorine, chlorine, bromine and iodine, provided that at least one of R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is halogen and there is at least one hydrogen and one halogen on adjacent carbon atoms; a and b are independently=0, 1 or 2 and (a+b)=2; and c and d are independently=0, 1, 2 or 3 and (c+d)=3; and at least one alkali metal hydroxide. The alkali metal hydroxide can be, for example, potassium or sodium hydroxide and the phase transfer catalyst can be, for example, at least one: crown ether such as 18-crown-6 and 15-crown-5; or onium salt such as, quaternary phosphonium salt and quaternary ammonium salt. The olefin is useful, for example, as an intermediate for producing other industrial chemicals and as a monomer for producing oligomers and polymers.
Owner:HONEYWELL INT INC

Preparation method of ferro-nickel bi-metal hydroxide of sheet structure on foamed nickel through in-situ growth

The invention discloses a preparation method of a ferro-nickel bi-metal hydroxide of a sheet structure on foamed nickel through in-situ growth, and belongs to the field of electrochemistry. Nickel nitrate hexahydrate, iron nitrate nonahydrate, urea, ammonium fluoride and foamed nickel are adopted as main raw materials, and an electrocatalyst through water electrolysis oxygen production is successfully prepared. The sheet structure of the catalyst supplies abundant active sites, due to existence of substrate foamed nickel, the electrical conductivity is enhanced, and when the hydroxide is adopted as the electro-catalysis oxygen production catalyst, the excellent catalysis activity is shown. The activity of a traditional non-noble metal material under an oxygen evolution reaction (OER) in analkaline electrolyte is not ideal. Accordingly, the OER catalysis performance of the non-noble metal material under the alkaline condition is improved, and the method is of great significance in solving the fossil fuel energy crisis. Nickel and iron earth reserve volumes are quite abundant, the OER catalytic performance of the ferro-nickel bi-metal hydroxide of the sheet structure under the alkaline condition is excellent, and the hydroxide is a catalytic material with the wide prospect.
Owner:QINGDAO UNIV

A high flame retardant high thermal conductivity composite material component and its manufacturing method

The invention relates to a high-molecular composite material having performances of high heat conduction and high flame retardation, the invention is characterized in that the composite material does not contain any halogen or a non environmentally-friendly heavy metal fire retardant, the flame resistance is capable of reaching a UL94 V0 standard, simultaneously, the composite material has good heat conducting performance, the heat conduction coefficient is more than 0.5 W / m. DEG C. The composite material provided in the invention has good injection moulding performance, extruding performance and hot pressing performance. The composite material comprises the following basic components: 1) one or a plurality of metal hydroxides, such as aluminum hydroxide, magnesium hydroxide, zinc hydroxide and the like, wherein the weight content is 10-70%, 2) about 0.2%-60% of the weight content of expandable graphite flaky powder, the lamina size is more than 10 um, and the expandable coefficient is more than or equal to 20 times; 3) 15%-70% of the weight content of matrix resins, such as epoxy resin, organic silicone resin, phenolic resin, thermosetting polyester resin and thermoplastic resins of nylon 6, nylon 66, PBT, PP, HDP and the like. The composite material component of the invention can be directly used for radiators such as LED, electric appliances and electronic components, the heat can be radiated into colder environment so that the operating temperature of the electronic device can be reduced.
Owner:HEFU NEW MATERIAL TECH WUXI

Ultraviolet-light deeply cross-linked halogen-free flame-retardant polyolefin cable material and method for preparing ultraviolet-light deeply cross-linked halogen-free flame-retardant polyolefin cable insulating or sheathing layer from same

ActiveCN102153802AEnhanced cross-linking efficiencyIncreased uniform photocrosslinking depthPlastic/resin/waxes insulatorsInsulated cablesCross-linkPolyolefin
The invention relates to ultraviolet-light deeply cross-linked halogen-free flame-retardant polyolefin cable material and a method for preparing an ultraviolet-light deeply cross-linked halogen-free flame-retardant polyolefin cable insulating or sheathing layer from the same. The method comprises the following steps: adding a metal hydroxide flame retardant, a cationic photoinitiator, a free radical photoinitiator, a multi-functional cross-linking agent, a compound antioxidant, a flame-retardant synergist, a synergistic smoke suppressant and a processing aid to polyethylene or grafted and modified polyethylene and / or ethylene vinyl acetate or grafted and modified copolymer thereof which are used as base materials, compounding, mixing the materials uniformly according to the proportion, granulating, extruding to prepare the ultraviolet-light cross-linked halogen-free flame-retardant polyolefin cable insulating or sheathing layer, and immediately irradiating with a specific ultraviolet-light source to obtain the deeply cross-linked halogen-free flame-retardant polyolefin cable insulating or sheathing layer. The cross-linking equipment used for preparing the novel material by using anovel technology has low investment, and the process is simple and environmental friendly, saves energy, ensures high production efficiency and low cost and good quality of product and can be widely used for producing high-performance special wire and cable products and the like.
Owner:HEILONGJIANG MINGXIANG TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products