Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

7720 results about "Injection moulding" patented technology

Injection moulding is a manufacturing process for producing parts by injecting molten material into a mould. Injection moulding can be performed with a host of materials mainly including metals (for which the process is called die-casting), glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed (Using a helical shaped screw), and injected (Forced) into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker (or toolmaker) from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers which do not melt during the injection moulding of some lower temperature thermoplastics, can be used for some simple injection moulds.

Injection molding method for neutral and acidic-group containing (meth)acrylate copolymers

The invention relates to a process for producing mouldings by injection moulding, the steps in the process being A) Melting a mixture made from a) a (meth)acrylate copolymer composed of from 40 to 100% by weight of free-radical-polymerized C1-C4-alkyl esters of acrylic or methacrylic acid and from 0 to 60% by weight of (meth)acrylate monomers having an anionic group in the alkyl radical, where the copolymer comprises b) from 0.1 to 3% by weight of a release agent, and, where appropriate, the mixture may comprise c) from 0 to 50% by weight of a drier, d) from 0 to 30% by weight of a plasticizer, e) from 0 to 100% by weight of additives or auxiliaries, f) from 0 to 100% by weight of an active pharmaceutical ingredient, g) from 0 to 20% by weight of another polymer or copolymer, where the amounts given for components b) to g) are based on the (meth)acrylate copolymer a) and the mixture prior to melting has a content of more than 0.5% by weight of low-boiling constituents with vapour pressure of at least 1.9 bar at 120° C., B) Devolatilizing the mixture in the thermoplastic state at temperatures of at least 120° C., thereby lowering to not more than 0.5% by weight the content of the low-boiling constituents with vapour pressure of at least 1.9 bar at 120° C., C) Injecting the molten and devolatilized mixture into the mould cavity of an injection mould, the temperature of the mould cavity being below the glass transition temperature of the (meth)acrylate copolymer by at least 10° C., cooling the molten mixture, and removing the resultant moulding from the mould.
Owner:PFIZER INC +1

Injection molding method for manufacturing plastic parts

Disclosed is an injection molding method for manufacturing plastic parts from thermoplastically processible plastic molding materials with at least one exposed part (1) and at least one functional part (10), whereby the plastic molding material for the exposed part (1) comprises a transparent or translucent matrix with added effect pigments, and whereby the functional parts (10) can exhibit different physical and/or chemical plastic properties to the exposed parts (1). The injection molding method comprises the following steps: a) injection molding and solidification of the plastic molding material of the at least one exposed part (1) with an exposed surface (2) and a core surface (3) facing away from the latter in a first mold (20) with a first cavity (21); b) opening of the first mold (20) along a parting line or plane (24); c) closing of a second mold (25) with the at least one exposed part (1) in a second cavity (28); d) injection molding and solidification of the plastic molding material of the functional part (10) on the core surface (3) of the at least one exposed part (1); and e) opening of the second mold (25) and removal of the part. The injection molding method according to the invention is characterized in that for each exposed part (1)—to prevent irregularities such as flow marks and/or knit lines—a single injection nozzle (5) positioned to optimize the flow or at least two injection nozzles in a cascaded injection molding method are used, and that the plastic molding material for the exposed part (1) comprises at least one transparent polymer. The corresponding plastic parts manufactured by injection molding exhibit an exposed surface (2) and a core surface (3) facing away from the latter with at least one injection point (6), whereby the functional part (10) of the plastic part is injection molded onto the core surface (3) of the previously solidified exposed part (1).
Owner:EMS CHEM AG

Polyhydroxylkanoates as well as blending modification for copolymer thereof and polylactic acid

The invention discloses a PHBV with good performance and a copolymer of PHBV and PLA and the preparation technique method. The invention is characterized in that 1 per cent to 99 per cent of PHAs, 1 per cent to 99 per cent of PLA1 and other additives 0-40 per cent are put in a mixer for 1 to 30 minutes, and then put in an electricity hot blast drying oven a temperature ranging from 40 to 100 DEG C for 2 to 48 hours after being mixed equally. The dried compound is plastified in a double screw extruder, the highest temperature of the double screw extruder is between 90 and 180 DEG C according to the the different content of PHAs and the temperature of the mouth mold is between110 to 170 DEG C. The material extruded from a die head is cooled, stretched and grained to form the complete biodegradation aggregate. The resin consisting of PHBV and copolymer of PHBV and PLA is able to be used for producing the thin films, plates and sheet materials and injected mold to plastic materials. The compound has biological degradability and good machining performance. The target product of the compound has excellent mechanical properties and can be used for replacing the petroleum base plastic to be widely used for packing, agriculture, medical material, electron, chemical industry concerning products for daily use, etc.
Owner:深圳市奥贝尔科技有限公司

Solid golf ball

The invention provides a solid golf ball having a solid core and a cover layer that encases the core and has an outermost layer on an outside surface of which are formed a plurality of dimples. The solid core is formed of a rubber composition composed of 100 parts by weight of a base rubber that includes from 60 to 100 parts by weight of a polybutadiene rubber having a cis-1,4 bond content of at least 60% and synthesized using a rare-earth catalyst, from 0.1 to 5 parts by weight of an organosulfur compound, an unsaturated carboxylic acid or a metal salt thereof, an inorganic filler, and an antioxidant. The solid core has a deformation, when compressed under a final load of 130 kgf from an initial load of 10 kgf, of from 2.0 to 4.0 mm, and has a specific hardness distribution. The cover layer is formed by injection molding a single resin blend composed primarily of (A) a polyurethane material and (B) a polyisocyanate compound, which resin blend includes a polyisocyanate compound in at least some portion of which all the isocyanate groups on a molecule remain in an unreacted state. The cover layer has a thickness of from 0.5 to 2.5 mm and a Shore D hardness at the surface of from 50 to 70. The golf ball has a deformation, when compressed under a final load of 130 kgf from an initial load of 10 kgf, of from 2.0 to 3.8 mm. The solid golf ball is advantageous overall in competitive use.
Owner:BRIDGESTONE SPORTS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products