Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

28850 results about "Sheet material" patented technology

Sheet Materials are engineered woods that are made by binding the timber material together with adhesives. The timber is typically formed into tiny strips and bound to create layers with wooden veneers sometimes used if appearances are important.

Thermoplastic starch compositions incorporating a particulate filler component

Thermoplastic starch compositions that include a particulate filler, e.g. an inorganic filler component, and optional fibrous component The compositions include a thermoplastic phase comprising a thermoplastic starch melt that contains, at a minimum, starch blended with an appropriate plasticizing agent under conditions in order for the starch to form a thermoplastic melt. The thermoplastic phase may also include one or more additional thermoplastic polymers and other optional reactants, liquids or cross-linking agents to improve the water-resistance, strength, and / or other mechanical properties of the thermoplastic melt, particularly upon solidification. The inorganic filler component may affect the mechanical properties but will mainly be added to reduce the cost of the thermoplastic starch compositions by displacing a significant portion of the more expensive starch or starch / polymer melt. Fibers may optionally be included in order to improve the mechanical properties of the thermoplastic starch compositions. The thermoplastic starch compositions may be shaped into a wide variety of useful articles, such as sheets, films, containers, and packaging materials. Because the thermoplastic starch compositions will typically include a thermoplastic phase that is biodegradable, and because the other components will either constitute a naturally occurring mineral and optionally a natural fiber, the overall composition will typically be more environmentally friendly compared to conventional thermoplastic materials.

Infusion device and an adhesive sheet material and a release liner

An infusion device (1) comprising a housing (3) with an upper face plate (4) and a lower face plate (5) and an adhesive sheet material (101) placed on the lower face plate (5) for securing the infusion device (1) to the skin, the adhesive sheet material (101) comprising a backing layer (102) which has an adhesive layer (103) on one surface, the adhesive layer (103) being covered by a removable release liner (104), and wherein the release liner (104) comprising at least one score line (106) comprising a spiral or helix, wherein the starting point (107) for the score line (106) is placed in the periphery (108) of the release liner (104) and wherein the score line (106) continues to an end point placed on the border of the periphery (110) of a central aperture (105) of the release liner.

Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same

InactiveUS6849085B2Promote graft healing in vivoStentsSurgeryMetal formingMetal foil
Metal foils, wires, and seamless tubes with increased mechanical strength are provided. As opposed to wrought materials that are made of a single metal or alloy, these materials are made of two or more layers forming a laminate structure. Laminate structures are known to increase mechanical strength of sheet materials such as wood and paper products and are used in the area of thin films to increase film hardness, as well as toughness. Laminate metal foils have not been used or developed because the standard metal forming technologies, such as rolling and extrusion, for example, do not lend themselves to the production of laminate structures. Vacuum deposition technologies can be developed to yield laminate metal structures with improved mechanical properties. In addition, laminate structures can be designed to provide special qualities by including layers that have special properties such as superelasticity, shape memory, radio-opacity, corrosion resistance etc. Examples of articles which may be made by the inventive laminate structures include implantable medical devices that are fabricated from the laminated deposited films and which present a blood or body fluid and tissue contact surface that has controlled heterogeneities in material constitution. An endoluminal stent-graft and web-stent that is made of a laminated film material deposited and etched into regions of structural members and web regions subtending interstitial regions between the structural members. An endoluminal graft is also provided which is made of a biocompatible metal or metal-like material. The endoluminal stent-graft is characterized by having controlled heterogeneities in the stent material along the blood flow surface of the stent and the method of fabricating the stent using vacuum deposition methods.

Ultra-thin absorbing sheet body, disposable absorbent article provided with ultra-thin absorbing sheet body and production device for ultra-thin absorbing sheet body

In an ultra-thin absorbent sheet member 1a in which an absorbent polymer powder 3 is adhered to one surface of a first nonwoven fabric 2 by a hotmelt adhesive such that absorbent polymer powder present areas 2c and absorbent polymer powder absent areas 2a, 2b exist; the absorbent polymer powder absent areas are present at opposite widthwise ends (2a) of the ultra-thin absorbent sheet member and at least one position (2b) between the opposite ends; the absorbent polymer powder 3 is bonded to the first nonwoven fabric 2 by first hotmelt adhesive layers S1 formed on an upper side of the first nonwoven fabric 2 and on a lower side of the absorbent polymer powder 3 and a second hotmelt adhesive layer S2 formed to cover upper sides of the absorbent polymer powder present areas 2c and the absorbent polymer powder absent areas 2a, 2b; and the first hotmelt adhesive layer S1 and the second hotmelt adhesive layer S2 are both made of an aggregate of linear hotmelt adhesive pieces.

Fabric crepe process for making absorbent sheet

A process for making absorbent cellulosic paper products such as sheet for towel, tissue and the like, includes compactively dewatering a nascent web followed by wet belt creping the web at an intermediate consistency of anywhere from about 30 to about 60 percent under conditions operative to redistribute the fiber on the belt, which is preferably a fabric. In preferred embodiments, the web is thereafter adhesively applied to a Yankee dryer using a creping adhesive operative to enable high speed transfer of the web of intermediate consistency such as a poly(vinyl alcohol) / polyamide adhesive. An absorbent sheet so prepared from a papermaking furnish exhibits an absorbency of at least about 5 g / g, a CD stretch of at least about 4 percent, and an MD / CD tensile ratio of less than about 1.1, and also exhibits a maximum CD modulus at a CD strain of less than 1 percent and sustains a CD modulus of at least 50 percent of its maximum CD modulus to a CD strain of at least about 4 percent. Products of the invention may also exhibit an MD modulus at break 1.5 to 2 times their initial MD modulus.

Laminated ultrasonic end effector

A laminated ultrasonic waveguide and a method of fabrication thereof including stamping at least two pieces of sheet stock to form stamped parts of the laminated ultrasonic waveguide. The stamped parts are then laminated together to form a laminated ultrasonic waveguide for transferring ultrasonic acoustic energy along a longitudinal axis of the laminated ultrasonic waveguide. The laminated ultrasonic waveguide may be part of an ultrasonic surgical instrument having an active tip end-effector, which is placed in contact with tissue of a patient to couple ultrasonic energy transferred along the laminated ultrasonic waveguide to the tissue. The stamped pieces of sheet stock can also be stamped to form one or more channels extending along the length of the laminated ultrasonic waveguide. The laminated ultrasonic waveguide can also define a connector at a proximal end thereof to transfer ultrasonic energy into the laminated ultrasonic waveguide. In different embodiments, the laminated ultrasonic waveguide comprises first and second (and third or more) stamped pieces of sheet stock that are laminated together.

Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials

Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials manufactured from at least one "hard" biopolymer and at least one "soft" biopolymer. "Hard" biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. "Soft" biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides and thermoplastically processable starch. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel. Wraps will typically be manufactured so as to have good "dead-fold" properties so as to remain in a wrapped position and not spring back to an "unwrapped" and planar form. Laminate films will typically have good water vapor barrier properties as measured by the their Water Vapor Permeability Coefficient (WVPC).

Composite building material

This invention generally pertains to a composite building material comprising a lightweight core with a thin fiber cement facing on one side of the core and a second facing material on the other side. The fiber cement facing that is used on at least one of the faces of the building material is 3 / 16″ or less, more preferably ⅛″ or less. The green fiber cement facing is preferably formed by a slurry-dewatering process to form a sheet that is in a plastic, uncured, state prior to manufacture of the composite. The composite building material is assembled in an uncured state and then cured.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products