Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4088 results about "Vinyl alcohol" patented technology

Vinyl alcohol, also called ethenol (IUPAC name), is the simplest enol. With the formula CH₂CHOH, it is a labile compound that converts to acetaldehyde. It is not a precursor to polyvinyl alcohol.

Composite materials comprising polar polymers and single-wall carbon nanotubes

The invention relates to a composite comprising a weight fraction of single-wall carbon nanotubes and at least one polar polymer wherein the composite has an electrical and/or thermal conductivity enhanced over that of the polymer alone. The invention also comprises a method for making this polymer composition. The present application provides composite compositions that, over a wide range of single-wall carbon nanotube loading, have electrical conductivities exceeding those known in the art by more than one order of magnitude. The electrical conductivity enhancement depends on the weight fraction (F) of the single-wall carbon nanotubes in the composite. The electrical conductivity of the composite of this invention is at least 5 Siemens per centimeter (S/cm) at (F) of 0.5 (i.e. where single-wall carbon nanotube loading weight represents half of the total composite weight), at least 1 S/cm at a F of 0.1, at least 1×10−4 S/cm at (F) of 0.004, at least 6×10−9 S/cm at (F) of 0.001 and at least 3×10−16 S/cm (F) plus the intrinsic conductivity of the polymer matrix material at of 0.0001. The thermal conductivity enhancement is in excess of 1 Watt/m-° K. The polar polymer can be polycarbonate, poly(acrylic acid), poly(acrylic acid), poly(methacrylic acid), polyoxide, polysulfide, polysulfone, polyamides, polyester, polyurethane, polyimide, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), copolymers thereof and combinations thereof. The composite can further comprise a nonpolar polymer, such as, a polyolefin polymer, polyethylene, polypropylene, polybutene, polyisobutene, polyisoprene, polystyrene, copolymers thereof and combinations thereof.
Owner:SAMSUNG ELECTRONICS CO LTD

Nanometer cellulose/polyvinyl alcohol gel composite material

The invention relates to a nanometer cellulose/polyvinyl alcohol gel composite material, which is characterized by comprising hydrogel and aerogel. A preparation method of the nanometer cellulose/polyvinyl alcohol gel composite material comprises the following process steps of 1, nanometer cellulose preparation by a chemical combination mechanical treatment method; 2, composite hydrogel preparation; and 3, composite aerogel preparation. The nanometer cellulose/polyvinyl alcohol gel composite material has the advantages that the composite aerogel belongs to a porous amorphous solid material consisting of nanometer level colloid particles or high-polymer molecules, and a unique open nanometer level porous structure and a continuous three-dimensional reticular structure are adopted, so the density is extremely low, the specific surface area is high, and the porosity is high, wherein the solid phase of the aerogel accounts for 0.2 percent to 20 percent of the total volume percentage, the characteristics of high adsorption catalytic capability, low thermal conductivity, low sound resistance, low refractive index and the like are shown, and wide application prospects are realized in the fields of aviation, spaceflight, chemical industry, metallurgy, energy-saving building and the like.
Owner:SHANDONG LVSEN WOOD PLASTIC COMPOSITE

Adhesive polyethylene compositions and multi-layer laminated films using the same

Disclosed is a specific adhesive polyethylene composition comprising [1] a modified ethylene/alpha-olefin copolymer resin or elastomer obtained by modifying a specific ethylene/alpha-olefin copolymer resin or elastomer, each of which comprises ethylene and an alpha-olefin of 3 to 20 carbon atoms, with an unsaturated carboxylic acid or anhydride, ester, amide, imide or metallic salt derivative of a unsaturated carboxylic acid thereof, [2] an unmodified ethylene/alpha-olefin copolymer resin and/or an unmodified ethylene/alpha-olefin copolymer elastomer and [3] a tackifier. Also disclosed is a multi-layer laminated film of 3 or more layers in which a layer of the above composition is interposed between an ethylene polymer layer and either a polyamide resin layer, an ethylene/vinyl alcohol copolymer layer or a layer of a mixture of polyamide resin and ethylene/vinyl alcohol copolymer. The adhesive polyethylene composition shows excellent adhesion strength to ethylene polymers, polyamide resins and ethylene/vinyl alcohol copolymers, high heat-sealing strength and heat resistance. The multi-layer laminated film shows excellent strength, heat resistance and gas barrier properties, and besides this film has heat shrinkability, so that the film is suitably used as a shrink film.
Owner:MITSUI CHEM INC

Process for making and aging high strength high gas barrier cellular cushioning product

ActiveUS7018495B2Reduce and eliminate film delaminationLower bursting pressurePaper/cardboard articlesHollow inflatable ballsPolyesterPolymer science
An inflatable cushioning article is made by a process of extruding two multilayer films (or extruding one film which is either annular or folded over) each having (a) a seal layer, (b) a tie layer containing an anhydride modified olefin polymer containing anhydride at a level of at least 150 ppm, based on the weight of the modified olefin polymer, and (c) an oxygen barrier layer comprising crystalline polyamide, crystalline polyester, ethylene/vinyl alcohol copolymer, polyacrylonitrile, and/or crystalline polycycloolefin. Selected portions of the films are heat sealed to one another in a selected area providing a heat seal pattern which leaves inflatable chambers between the films, whereby an inflatable cellular cushioning article is produced. At some point after extrusion, at least one of the multilayer films are aged for a time and at a temperature in accordance with at least one member selected from the group consisting of: (i) 141° F. to 250° F. for a period of at least 1 second; (ii) 101° F. to 140° F. for a period of at least 10 minutes; (iii) 61° F. to 100° F. for a period of at least 1 hour; and (iv) 30° F. to 60° F. for a period of at least 1 day. After aging, the cellular cushioning article is inflated. Preferably, the article is inflated to an internal pressure of at least 1.5 psi.
Owner:SEALED AIR U S
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products