Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5289 results about "Polyacrylonitrile" patented technology

Polyacrylonitrile (PAN), also known as polyvinyl cyanide and Creslan 61, is a synthetic, semicrystalline organic polymer resin, with the linear formula (C₃H₃N)ₙ. Though it is thermoplastic, it does not melt under normal conditions. It degrades before melting. It melts above 300 °C if the heating rates are 50 degrees per minute or above. Almost all PAN resins are copolymers made from mixtures of monomers with acrylonitrile as the main monomer. It is a versatile polymer used to produce large variety of products including ultra filtration membranes, hollow fibers for reverse osmosis, fibers for textiles, oxidized PAN fibers. PAN fibers are the chemical precursor of high-quality carbon fiber. PAN is first thermally oxidized in air at 230 °C to form an oxidized PAN fiber and then carbonized above 1000 °C in inert atmosphere to make carbon fibers found in a variety of both high-tech and common daily applications such as civil and military aircraft primary and secondary structures, missiles, solid propellant rocket motors, pressure vessels, fishing rods, tennis rackets and bicycle frames. It is a component repeat unit in several important copolymers, such as styrene-acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS) plastic.

Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof

The invention discloses sulfenyl anode of a lithium-sulfur rechargeable battery and a preparation method thereof. The sulfenyl anode is prepared by the steps of: equally mixing sulfenyl compound active material, cyclodextrin binder and carbon conductivity agent, coating the mixture on an aluminum foil current collector and obtaining the sulfenyl anode after drying and pressing. The coating thickness is 50 to 100 microns and the aluminum foil thickness is 20 to 30 microns; the mass ratio of the sulfenyl compound active material, the cyclodextrin binder and the carbon conductivity agent is 7 to 8:0.6 to 1:0.6 to 1.5, wherein the sulfenyl compound active material is formed by the steps of: equally mixing carbon nano tube, sulfur and polyacrylonitrile according to the mass ratio of 0.1 to 0.2:6 to 8:1 and sintering the mixture in protection of inert gas at the temperature of 300 to 320 DEG C for insulation for 6 to 8 hours. By using the lithium-sulfur rechargeable battery with the sulfenyl anode and lithium metal cathode, the reversible capacity of the sulfenyl compound active material reaches 680mAh.g under 0.1C multiplying power charge-discharge condition; and compared with the discharge capacity of second circulation, the discharge capacity after 100 times of circulation decreases less than 10 percent.
Owner:SHANGHAI JIAO TONG UNIV

Process for making and aging high strength high gas barrier cellular cushioning product

ActiveUS7018495B2Reduce and eliminate film delaminationLower bursting pressurePaper/cardboard articlesHollow inflatable ballsPolyesterPolymer science
An inflatable cushioning article is made by a process of extruding two multilayer films (or extruding one film which is either annular or folded over) each having (a) a seal layer, (b) a tie layer containing an anhydride modified olefin polymer containing anhydride at a level of at least 150 ppm, based on the weight of the modified olefin polymer, and (c) an oxygen barrier layer comprising crystalline polyamide, crystalline polyester, ethylene/vinyl alcohol copolymer, polyacrylonitrile, and/or crystalline polycycloolefin. Selected portions of the films are heat sealed to one another in a selected area providing a heat seal pattern which leaves inflatable chambers between the films, whereby an inflatable cellular cushioning article is produced. At some point after extrusion, at least one of the multilayer films are aged for a time and at a temperature in accordance with at least one member selected from the group consisting of: (i) 141° F. to 250° F. for a period of at least 1 second; (ii) 101° F. to 140° F. for a period of at least 10 minutes; (iii) 61° F. to 100° F. for a period of at least 1 hour; and (iv) 30° F. to 60° F. for a period of at least 1 day. After aging, the cellular cushioning article is inflated. Preferably, the article is inflated to an internal pressure of at least 1.5 psi.
Owner:SEALED AIR U S

Method for preparing polyacrylonitrile carbon fiber protofilament by dry and wet methods

The invention discloses a method for preparing polyacrylonitrile carbon fiber protofilament by dry and wet methods. The method comprises the steps of polymerization, demonomerization and defoaming, filtration, coagulation, washing and drafting, oiling densification, steam drafting, heat setting and drying. Three-level coagulating baths at the temperature of between 10 DEG C below zero and 70 DEG C and with dimethyl sulfoxide with concentration of 10 to 60 mass percent are adopted in the coagulation step, and the first coagulating bath contains aqueous ammonia accounting for 0.05 to 1 percent of the mass of the first coagulating bath; and a spinning head is subjected to 1.5 to 5 times positive drafting in the first coagulating bath, and the drafting is 0 in the second and third coagulatingbathes. According to the method for preparing the polyacrylonitrile carbon fiber protofilament, the spinning process is stable, the broken filament is little, the spinning speed is high, the spinningis stable, the prepared protofilament has few defects, the density is not less than 1.180g/cm<3>, and the tensile strength is not less than 7cN/dtex. The protofilament can be prepared into a high-performance carbon fiber with tensile strength of more than 4.9GPa and elastic modulus of between 260 and 280GPa by high-temperature carbonization.
Owner:KINGFA SCI & TECH CO LTD +1

Silicon-carbon composite material with nano micropores and preparation method as well as application thereof

The invention discloses a silicon-carbon composite material with nano micropores and a preparation method as well as application thereof. The material comprises nano-silicon (Si) particles and a carbon nanofiber matrix, wherein the nano-silicon particles are dispersed in the carbon nanofiber matrix; and nano pores and micropores communicated with the nano pores are distributed in the carbon nanofiber matrix. The method comprises the steps of dissolving the nano-Si particles and polyacrylonitrile (PAN) in a solvent to prepare a mixed spinning solution, then carrying out electrostatic spinning on the mixed spinning solution, and curing spinning trickles in a coagulating bath to obtain a porous PAN-Si composite nanofiber; and then carrying out oxidation and carbonization treatment in sequence to obtain the silicon-carbon composite material with a nano micropore structure. The silicon-carbon composite material is applied to preparation of lithium ion battery cathode materials. Compared with the prior art, the silicon-carbon composite material ensures the overall electron transport capacity of the material while reserving buffer space for expansion of the nano-Si particles.
Owner:深圳石墨烯创新中心有限公司

Pre-oxidation method for carbon fiber precursor polyacrylnitrile fiber

The invention discloses a preoxidation method for a polyacrylonitrile fiber of former body of carbon fiber. The method is, under normal pressure, to subject the polyacrylonitrile fiber precursor orderly and continuously to constant preoxidation, that is, preoxidation at five temperatures in a low temperature carbonization furnace, including a cyclization process under the protection of nitrogen at a first temperature and a second temperature with rigid drawing at the second temperature, and a oxidation crosslink process with the presence of air at a third temperature, a fourth temperature and a fifth temperature; to low temperature carbonization with nitrogen passing through the furnace at a sixth temperature; and finally to high temperature carbonization under the protection of nitrogen after entering a high temperature carbonization furnace through a tension bracket. The method has the advantages that in case of the protection of nitrogen gas, the heat treatment to fiber can improve the reactivity of the fiber, is favorable for the implement of cyclization reaction, and meanwhile in the case of the protection of nitrogen gas, the applied rigid drawing can improve the orientation degree of a molecular chain along the fiber axis, and thus polyacrylonitrile carbon fiber with higher strength and higher modulus can be obtained.
Owner:DONGHUA UNIV +1

Method for preparing carbon nanofiber based non-noble-metal catalyst through oxidation improved electrostatic spinning

The invention discloses a method for preparing a carbon nanofiber-based non-noble-metal catalyst through oxidation improved electrostatic spinning in the technical field of carbon nanofibers and fuel cell catalysts. The method disclosed by the invention comprises the following steps: dissolving at least one transition metal salt and polyacrylonitrile in a solvent to form a precursor solution; carrying out electrostatic spinning on the precursor solution under certain parameter conditions to obtain iron-containing polyacrylonitrile nanofibers; and heat treating the iron-containing polyacrylonitrile nanofibers in an atmosphere containing a small amount of oxidizing gas to obtain carbon nanofibers containing transition metal and nitrogen element and improved by the small amount of oxidizing gas. According to the method, the cost of the raw materials is low, the operation is convenient and controllable, the operation is easy, the surface structure of the catalyst can be regulated and controlled, and the prepared oxidation improved carbon nanofiber based non-noble-metal catalyst has good catalytic activity on oxygen reduction reaction. The whole preparation process can be combined with a traditional carbon fiber technique, and the method has a prospect that large scale and industrialization of the non-noble metal catalyst can be realized.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products