Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38384 results about "Ether" patented technology

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups, as opposed to esters. They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anesthetic diethyl ether, commonly referred to simply as "ether" (CH₃–CH₂–O–CH₂–CH₃). Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

Method to plasma deposit on organic polymer dielectric film

A method for protecting an organic polymer underlayer during a plasma assisted process of depositing a subsequent film on the organic polymer underlayer is disclosed. The method provides the deposition of a protective continuous layer using organic polymer damage-free technique in order to not damage the organic polymer underlayer and to protect the organic polymer underlayer during the plasma assisted process of depositing a subsequent film. The organic polymer damage-free technique is a non-plasma process, using only thermal energy and chemical reactions to deposit the continuous layer. The organic polymer damage-free technique can also be a plasma assisted process using a reduced plasma power low enough in order to not damage the organic polymer underlayer. This method is applicable to many organic polymer underlayers such as organic polymer is aromatic hydrocarbon, polytetrafluoroehtylene (PTFE), parylene, benzocyclobutene-based polymers (BCB), polyimide, fluorinated polyimide, fluorocarbon-based polymers, poly(arylene ether)-based polymers (PAE), cyclohexanone-based polymers, and to many plasma assisted deposition processes such as plasma enhanced CVD deposition, plasma enhanced ALD deposition and plasma enhanced NLD deposition of silicon dioxide, silicon nitride, nitrided diffusion barrier such as TiN, TaN, WN, TiSiN, TaSiN, WSiN.
Owner:TAIWAN SEMICON MFG CO LTD

Sheets having a starch-based binding matrix

Compositions and methods for manufacturing sheets having a starch-bound matrix, optionally reinforced with fibers and optionally including an inorganic mineral filler. Suitable mixtures for forming the sheets are prepared by mixing together water, unmodified and ungelatinized starch granules, a cellulosic ether, optionally fibers, and optionally an inorganic mineral filler in the correct proportions to form a sheet having desired properties. The mixtures are formed into sheets by passing them between one or more sets of heated rollers to form green sheets. The heated rollers cause the cellulosic ether to form a skin on the outer surfaces of the sheet that prevents the starch granules from causing the sheet to adhere to the rollers upon gelation of the starch. The green sheets are passed between heated rollers to gelatinize the starch granules, and then to dry the sheet by removing a substantial portion of the water by evaporation. The starch and cellulosic ether form the binding matrix of the sheets with the fibers and optional inorganic filler dispersed throughout the binding matrix. The starch-bound sheets can be cut, rolled, pressed, scored, perforated, folded, and glued to fashion articles from the sheets much like paper or paperboard. The sheets are particularly useful in the mass production of containers, such as food and beverage containers.
Owner:E KHASHOGGI INDS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products