Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1879 results about "Path length" patented technology

Path length can mean one of several related concepts:

Real-time mission adaptable route planner

A hybrid of grid-based and graph-based search computations, together with provision of a sparse search technique effectively limited to high-probability candidate nodes provides accommodation of path constraints in an optimization search problem in substantially real-time with limited computational resources and memory. A grid of best cost (BC) values are computed from a grid of map cost (MC) values and used to evaluate nodes included in the search. Minimum segment/vector length, maximum turn angle, and maximum path length along a search path are used to limit the number of search vectors generated in the sparse search. A min-heap is preferably used as a comparison engine to compare cost values of a plurality of nodes to accumulate candidate nodes for expansion and determine which node at the terminus of a partial search path provides the greatest likelihood of being included in a near-optimal complete solution, allowing the search to effectively jump between branches to carry out further expansion of a node without retracing portions of the search path. Capacity of the comparison engine can be limited in the interest of expediting of processing and values may be excluded or discarded therefrom. Other constraints such as approach trajectory are accommodated by altering MC and BC values in a pattern or in accordance with a function of a parameter such as altitude or by testing of the search path previously traversed.
Owner:LOCKHEED MARTIN CORP

Fluid jet surgical instruments

The invention provides a variety of surgical instruments for forming a liquid jet, which are useful for performing a wide variety of surgical procedures. In some embodiments, the invention provides surgical liquid jet instruments having a pressure lumen and an evacuation lumen, where the pressure lumen includes at least one nozzle for forming a liquid jet and where the evacuation lumen includes a jet-receiving opening for receiving the liquid jet when the instrument is in operation. In some embodiments, the pressure lumen and the evacuation lumen of the surgical liquid jet instruments are constructed and positionable relative to each other so that the liquid comprising the liquid jet, and any tissue or material entrained by the liquid jet can be evacuated through the evacuation lumen without the need for an external source of suction. The invention also provides a variety of surgical liquid jet instruments that are constructed and configured specifically for use in a surrounding liquid environment or a surrounding gaseous environment. The invention also provides a variety of surgical liquid jet instruments that are rotatably deployable from an undeployed position, for insertion into the body of a patient, to a deployed position, in which there is a separation distance between the liquid jet nozzle and the jet-receiving opening that defines a liquid jet path length. The invention also provides surgical methods utilizing the inventive surgical liquid jet instruments, and methods for forming components of the surgical liquid jet instruments.
Owner:HYDROCISION

Fluid jet surgical instruments

The invention provides a variety of surgical instruments for forming a liquid jet, which are useful for performing a wide variety of surgical procedures. In some embodiments, the invention provides surgical liquid jet instruments having a pressure lumen and an evacuation lumen, where the pressure lumen includes at least one nozzle for forming a liquid jet and where the evacuation lumen includes a jet-receiving opening for receiving the liquid jet when the instrument is in operation. In some embodiments, the pressure lumen and the evacuation lumen of the surgical liquid jet instruments are constructed and positionable relative to each other so that the liquid comprising the liquid jet, and any tissue or material entrained by the liquid jet can be evacuated through the evacuation lumen without the need for an external source of suction. The invention also provides a variety of surgical liquid jet instruments that are constructed and configured specifically for use in a surrounding liquid environment or a surrounding gaseous environment. The invention also provides a variety of surgical liquid jet instruments that are rotatably deployable from an undeployed position, for insertion into the body of a patient, to a deployed position, in which there is a separation distance between the liquid jet nozzle and the jet-receiving opening that defines a liquid jet path length. The invention also provides surgical methods utilizing the inventive surgical liquid jet instruments, and methods for forming components of the surgical liquid jet instruments.
Owner:HYDROCISION

Mobile robot path planning method based on improvement of ant colony algorithm and particle swarm optimization

The invention discloses a mobile robot path planning method based on an improvement of an ant colony algorithm and particle swarm optimization. The method mainly solves the problems that in the prior art, the operating speed of an algorithm is low, and frequency of turning of an optimized path is high. The planning method includes the steps that modeling is carried out on a work environment of a robot; the particle swarm optimization is utilized to quickly carry out path planning, pheromones more than those around an obtained path are scattered on the obtained path, and guiding is provided for an ant colony; an ant colony algorithm optimized by the principle of inertia is adopted, and optimization is conducted on the basis of the particle swarm optimization; the motion path of the robot is output according to an optimization result. According to the planning method, comprehensive consideration is given to stability and robustness of the algorithm, iterations can be effectively reduced, searching efficiency is improved, the path length is shortened, the frequency of turning is reduced, path quality is substantially improved, and the planning method accords with an artificial planning intention and is suitable for autonomous navigation of various mobile robots in a static environment.
Owner:GUILIN UNIV OF ELECTRONIC TECH

Low coherence interferometry utilizing phase

A method for determining a characteristic of an analyte in a biological sample, the method comprising: directing broadband light by means of a sensing light path at the biological sample, at a target depth defined by the sensing light path and a reference light path; and receiving the broadband light reflected from the biological sample by means of the sensing light path. The method also includes: directing the broadband light by means of the reference light path at a reflecting device; receiving the broadband light reflected from the reflecting device by means of the reference light path; and interfering the broadband light reflected from the biological sample and the broadband light reflected from the reflecting device. The method further includes: detecting the broadband light resulting from interference of the broadband light reflected from the biological sample and the broadband light reflected from the reflecting device; and modulating an effective light path length of at least one of the reference light path and the sensing light path to enhance interference of the broadband light reflected from the biological sample and the broadband light reflected from the reflecting device. The method continues with: determining a magnitude of change of the effective light path length introduced by the modulating when interference is enhanced; determining a variation in an index of refraction from a ratio of the magnitude of change of the effective light path length and the target depth; and determining the characteristic of the analyte in the biological sample from the variation in the index of refraction.
Owner:VZN CAPITAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products