Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2721 results about "Three dimensional imaging" patented technology

Three-dimensional imaging. An MRI term for a specialised imaging technique in which a computer processes individual slice acquisitions to produce a three-dimensional (length, width, height) image.

Imaging, therapy, and temperature monitoring ultrasonic system

An ultrasonic system useful for providing imaging, therapy and temperature monitoring generally comprises an acoustic transducer assembly configured to enable the ultrasound system to perform the imaging, therapy and temperature monitoring functions. The acoustic transducer assembly comprises a single transducer that is operatively connected to an imaging subsystem, a therapy subsystem and a temperature monitoring subsystem. The ultrasound system may also include a display for imaging and temperature monitoring functions. An exemplary single transducer is configured such that when connected to the subsystems, the imaging subsystem can generate an image of a treatment region on the display, the therapy subsystem can generate high power acoustic energy to heat the treatment region, and the temperature monitoring subsystem can map and monitor the temperature of the treatment region and display the temperature on the display, all through the use of the single transducer. Additionally, the acoustic transducer assembly can be configured to provide three-dimensional imaging, temperature monitoring or therapeutic heating through the use of adaptive algorithms and/or rotational or translational movement. Moreover, a plurality of the exemplary single transducers can be provided to facilitate enhanced treatment capabilities.
Owner:GUIDED THERAPY SYSTEMS LLC

Imaging, Therapy, and temperature monitoring ultrasonic system

An ultrasonic system useful for providing imaging, therapy and temperature monitoring generally comprises an acoustic transducer assembly configured to enable the ultrasound system to perform the imaging, therapy and temperature monitoring functions. The acoustic transducer assembly comprises a single transducer that is operatively connected to an imaging subsystem, a therapy subsystem and a temperature monitoring subsystem. The ultrasound system may also include a display for imaging and temperature monitoring functions. An exemplary single transducer is configured such that when connected to the subsystems, the imaging subsystem can generate an image of a treatment region on the display, the therapy subsystem can generate high power acoustic energy to heat the treatment region, and the temperature monitoring subsystem can map and monitor the temperature of the treatment region and display the temperature on the display, all through the use of the single transducer. Additionally, the acoustic transducer assembly can be configured to provide three-dimensional imaging, temperature monitoring or therapeutic heating through the use of adaptive algorithms and / or rotational or translational movement. Moreover, a plurality of the exemplary single transducers can be provided to facilitate enhanced treatment capabilities.
Owner:GUIDED THERAPY SYSTEMS LLC

3-D imaging multiple target laser radar

A three dimensional imaging device is presented which uses a single pulse from a pulsed light source to detect objects which are obscured by camouflage, fog or smoke but otherwise enveloped by a light-transmitting medium. The device simultaneously operates in two modes, light reflected from the nearest object is processed to form a three-dimensional image by an array of pixels. This first image is based upon the light-pulse transit time recorded in each pixel. Each pixel also contains a high-speed analog memory that sequentially stores reflected signals at a repeated time interval. The first reflection acts as a time base that controls when the analog memory begins or ends the storage sequence. The first return could be from a camouflage net and the amplitudes of the return signals, after the first return, would then be from objects behind the net. Computer processing these amplitudes reveals the three-dimensional nature of the obscured objects.The device consists of the pulsed light source, optics for collecting the reflected light, a sensor for detecting the light and converting it to electrical data, drive and output electronics for timing and signal conditioning of data generated by the sensors and a computer for processing the sensor data and converting it to a three dimensional image. The sensor collects and processes the light data in a unique manner, first converting it to electricity by a number of alternate detector technologies and then using integrated circuit chips which consist of a two dimensional array of electronic pixels also called unit cells. The two dimensional array defines two dimensions of the image. Stored within each unit cells is data associated with the third dimension, ranges of targets, and amplitudes of target reflections. This data is read out of the integrated circuit chip in the time interval between laser pulses to a processing computer. The processing computer corrects the data and, by means of computer algorithms specific to the device, converts the data to a three-dimensional image of one or more targets. This image may be viewed or processed electronically to isolate targets.
Owner:CONTINENTAL AUTONOMOUS MOBILITY US LLC

Phased array acoustic system for 3d imaging of moving parts

The invention relates to an ultrasound phased array imaging system comprising: probe (10) with a 2-D array of transducer elements (12) for acquiring 3-D ultrasound data of a volume of a body, including moving tissue and fluid flow; a beamforming system (10, 12, 14, 16) for emitting and receiving in real time ultrasound beams in said volume, which provides, in real time and in 3-D, more than one spatial receive beams signals for each transmission beam within an ensemble length of more than two temporal samples, among which the receive flow beam signals and the receive tissue beam signals are substantially temporally uncorrelated but spatially correlated; separation means (30) for processing in real time the receive beams signals, comprising adaptive spatial tissue filtering means using simultaneously more than one spatial receive beam signals acquired in 3-D within the ensemble length of more than two temporal samples, which separation means analyzes temporal variations of the respective successive receive signals and extracts flow receive beam signals from spatial combinations of receive beam signals; processing means (40, 50) and display means (62, 60) for processing flow Doppler signals and for displaying images based on said processed flow Doppler signals.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Optical techniques for the measurement of chest compression depth and other parameters during cpr

Embodiments of the present invention are related to a method and device for the determination and calculation of the depth of chest compressions during the administration of cardiopulmonary resuscitation (CPR). Embodiments use an optical sensor to monitor the distance that a victim's chest is displaced during each compression throughout the administration of CPR. The optical sensor is most commonly an image sensor such as a CMOS or CCD sensor, and more specifically a CMOS image sensor capable of three-dimensional imaging based on the time-of-flight principle. An infrared emitter may illuminate the victim's body and any visible piece of ground beside the victim. As the infrared light interacts with any surfaces it encounters, it is reflected and returns to the image sensor where the time of flight of the infrared light is calculated for every pixel in the image sensor. The distance data is used to gauge the effective displacement of the victim's chest. The optical sensors can be used to visualize the size of a patient and immediately gauge the body type and instruct the user accordingly. Furthermore, optical measurement techniques can be used to accurately measure chest rise during artificial respiration and ensure that proper ventilation is being administered in between compressions. In addition, optical measurements of the chest of the victim and the hands of the rescuer can be used to help ensure that the rescuer has positioned his or her hands in the anatomically correct location for effective CPR.
Owner:STRYKER CANADA ULC

Transmitter patterns for multi beam reception

Provided herein is a method for use in medical applications that permits (1) affordable three-dimensional imaging of blood flow using a low-profile easily-attached transducer pad, (2) real-time blood-flow vector velocity, and (3) long-term unattended Doppler-ultrasound monitoring in spite of motion of the patient or pad. The pad and associated processor collects and Doppler processes ultrasound blood velocity data in a three dimensional region through the use of a planar phased array of piezoelectric elements. The invention locks onto and tracks the points in three-dimensional space that produce the locally maximum blood velocity signals. The integrated coordinates of points acquired by the accurate tracking process is used to form a three-dimensional map of blood vessels and provide a display that can be used to select multiple points of interest for expanded data collection and for long term continuous and unattended blood flow monitoring. The three dimensional map allows for the calculation of vector velocity from measured radial Doppler.
A thinned array (greater than half-wavelength element spacing of the transducer array) is used to make a device of the present invention inexpensive and allow the pad to have a low profile (fewer connecting cables for a given spatial resolution). The full aperture is used for transmit and receive so that there is no loss of sensitivity (signal-to-noise ratio) or dynamic range. Utilizing more elements (extending the physical array) without increasing the number of active elements increases the angular field of view. A further increase is obtained by utilizing a convex non-planar surface.
Owner:PHYSIOSONICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products