Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2748 results about "Three dimensional imaging" patented technology

Three-dimensional imaging. An MRI term for a specialised imaging technique in which a computer processes individual slice acquisitions to produce a three-dimensional (length, width, height) image.

Method of Error Correction for 3D Imaging Device

A method is presented for correcting errors in a 3D scanner. Measurement errors in the 3D scanner are determined by scanning each of a plurality of calibration objects in each of a plurality of sectors in the 3D scanner's field of view. The calibration objects have a known height, a known width, and a known length. The measurements taken by the 3D scanner are compared to the known dimensions to derive a measurement error for each dimension in each sector. An estimated measurement error is calculated based on scans of each of the plurality of calibration objects. When scanning target objects in a given sector, the estimated measurement error for that sector is used to correct measurements obtained by the 3D scanner.
Owner:HAND HELD PRODS

Three-dimensional imaging and display system

A three-dimensional imaging and display system is provided in which user input is optically detected in an imaging volume by measuring the path length of an amplitude modulated scanning beam as a function of the phase shift thereof. Visual image user feedback concerning the detected user input is presented.
Owner:APPLE INC

Systems And Methods Of High Resolution Three-Dimensional Imaging

Embodiments of the invention provide systems and methods for three-dimensional imaging with wide field of view and precision timing. In accordance with one aspect, a three-dimensional imaging system includes an illumination subsystem configured to emit a light pulse with a divergence sufficient to irradiate a scene having a wide field of view. A sensor subsystem is configured to receive over a wide field of view portions of the light pulse reflected or scattered by the scene and including: a modulator configured to modulate as a function of time an intensity of the received light pulse portion to form modulated received light pulse portions; and means for generating a first image corresponding to the received light pulse portions and a second image corresponding to the modulated received light pulse portions. A processor subsystem is configured to obtain a three-dimensional image based on the first and second images.
Owner:NLIGHT INC

Imaging, therapy, and temperature monitoring ultrasonic system

An ultrasonic system useful for providing imaging, therapy and temperature monitoring generally comprises an acoustic transducer assembly configured to enable the ultrasound system to perform the imaging, therapy and temperature monitoring functions. The acoustic transducer assembly comprises a single transducer that is operatively connected to an imaging subsystem, a therapy subsystem and a temperature monitoring subsystem. The ultrasound system may also include a display for imaging and temperature monitoring functions. An exemplary single transducer is configured such that when connected to the subsystems, the imaging subsystem can generate an image of a treatment region on the display, the therapy subsystem can generate high power acoustic energy to heat the treatment region, and the temperature monitoring subsystem can map and monitor the temperature of the treatment region and display the temperature on the display, all through the use of the single transducer. Additionally, the acoustic transducer assembly can be configured to provide three-dimensional imaging, temperature monitoring or therapeutic heating through the use of adaptive algorithms and / or rotational or translational movement. Moreover, a plurality of the exemplary single transducers can be provided to facilitate enhanced treatment capabilities.
Owner:GUIDED THERAPY SYSTEMS LLC

Multi-pixel high-resolution three-dimensional imaging radar

A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.
Owner:CALIFORNIA INST OF TECH

Light Management for Image and Data Control

A light control and display technology applicable to light redirection and projection with the capacity, in a number of embodiments modified for particular applications, to produce managed light, including advanced images. Applications include miniature to very large scale video displays, optical data processing, 3-dimensional imaging, and lens-less vision enhancement for poor night-driving vision, cataracts and macular degeneration.
Owner:SIMMONS JOHN CASTLE

Integrated Illumination And Detection For LIDAR Based 3-D Imaging

Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter. In some other embodiments, the optical design avoids losses associated with a beam splitter.
Owner:VELODYNE LIDAR USA INC

Imaging, Therapy, and temperature monitoring ultrasonic system

An ultrasonic system useful for providing imaging, therapy and temperature monitoring generally comprises an acoustic transducer assembly configured to enable the ultrasound system to perform the imaging, therapy and temperature monitoring functions. The acoustic transducer assembly comprises a single transducer that is operatively connected to an imaging subsystem, a therapy subsystem and a temperature monitoring subsystem. The ultrasound system may also include a display for imaging and temperature monitoring functions. An exemplary single transducer is configured such that when connected to the subsystems, the imaging subsystem can generate an image of a treatment region on the display, the therapy subsystem can generate high power acoustic energy to heat the treatment region, and the temperature monitoring subsystem can map and monitor the temperature of the treatment region and display the temperature on the display, all through the use of the single transducer. Additionally, the acoustic transducer assembly can be configured to provide three-dimensional imaging, temperature monitoring or therapeutic heating through the use of adaptive algorithms and / or rotational or translational movement. Moreover, a plurality of the exemplary single transducers can be provided to facilitate enhanced treatment capabilities.
Owner:GUIDED THERAPY SYSTEMS LLC

2-D Planar VCSEL Source for 3-D Imaging

An apparatus and a method are provided for 3-D proximity sensing, imaging and scanning using a 2-D planar VCSEL array source using reflected radiation from an object being detected. An important aspect of the apparatus is a compact high power optical source and in particular, an optical source comprising a plurality of VCSELs to illuminate the object. VCSELs in the optical source are configured in different 2-D planar arrangements, such that the optical source may be used in many different modes to adapt to different sensing, imaging and scanning requirement suited for different environments including one where shape, size and illumination mode require to be altered dynamically. When used in different modes of operation the apparatus provides a comprehensive set of measured distance and intensity profile of the object to compute a 3-D image.
Owner:PRINCETON OPTRONICS

Three-dimension imaging lidar

This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.
Owner:UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTATOR OF THE NAT AERONAUTICS SPACE ADMINISTATION

System for two-dimensional and three-dimensional imaging of tubular structures in the human body

InactiveUS6928314B1Interpretation time is not improvedStrong computing abilityImage enhancementImage analysisHuman bodyViewpoints
This invention is a system, method, and article of manufacture for imaging tubular structures of the human body, such as the digestive tract of a living person, with a medical imaging device such as a computed tomography (CT) scanner and a computer work station. The system comprises receiving a first image data set representative of a portion of the colon in a prone position and a second image data set representative of a portion of the colon in a supine position, at a series of viewpoints. At each of the viewpoints, an image is generated of the colon in the prone and supine positions. The prone and supine images of the colon are simultaneously displayed on a screen display in a dual view mode.
Owner:MAYO FOUND FOR MEDICAL EDUCATION & RES

3-D imaging multiple target laser radar

A three dimensional imaging device is presented which uses a single pulse from a pulsed light source to detect objects which are obscured by camouflage, fog or smoke but otherwise enveloped by a light-transmitting medium. The device simultaneously operates in two modes, light reflected from the nearest object is processed to form a three-dimensional image by an array of pixels. This first image is based upon the light-pulse transit time recorded in each pixel. Each pixel also contains a high-speed analog memory that sequentially stores reflected signals at a repeated time interval. The first reflection acts as a time base that controls when the analog memory begins or ends the storage sequence. The first return could be from a camouflage net and the amplitudes of the return signals, after the first return, would then be from objects behind the net. Computer processing these amplitudes reveals the three-dimensional nature of the obscured objects.The device consists of the pulsed light source, optics for collecting the reflected light, a sensor for detecting the light and converting it to electrical data, drive and output electronics for timing and signal conditioning of data generated by the sensors and a computer for processing the sensor data and converting it to a three dimensional image. The sensor collects and processes the light data in a unique manner, first converting it to electricity by a number of alternate detector technologies and then using integrated circuit chips which consist of a two dimensional array of electronic pixels also called unit cells. The two dimensional array defines two dimensions of the image. Stored within each unit cells is data associated with the third dimension, ranges of targets, and amplitudes of target reflections. This data is read out of the integrated circuit chip in the time interval between laser pulses to a processing computer. The processing computer corrects the data and, by means of computer algorithms specific to the device, converts the data to a three-dimensional image of one or more targets. This image may be viewed or processed electronically to isolate targets.
Owner:CONTINENTAL AUTONOMOUS MOBILITY US LLC

LIDAR Based 3-D Imaging With Varying Pulse Repetition

ActiveUS20170269209A1Reduce total energy consumption and heatReduce consumptionElectromagnetic wave reradiationSteroscopic systemsPulse beamRadar
Methods and systems for performing three dimensional LIDAR measurements with different pulse repetition patterns are described herein. Each repetitive pattern is a sequence of measurement pulses that repeat over time. In one aspect, the repetition pattern of a pulsed beam of illumination light emitted from a LIDAR system is varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the repetitive pattern is varied by skipping a number of pulses. In some examples, the repetitive pattern of pulses of illumination light emitted from the LIDAR system is varied by changing a repetition rate of the sequence of emitted pulses. In some examples, the pulse repetition pattern is varied based on the orientation of the LIDAR device. In some examples, the repetition pattern is varied based on an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

Three-Dimensional Imaging System Using Optical Pulses, Non-Linear Optical Mixers And Holographic Calibration

A three dimensional imaging system is disclosed which includes a three dimensional display (12), three-dimensional calibration equipment (16), and one or more two-dimensional (15) or three dimensional (14) image scanners. The three-dimensional display (12) uses optical pulses (32a-32k) and a non linear optical mixer (18) to display a three-dimensional image (17). The three-dimensional image (17) is generated in voxels of the display volume (28) as the optical mixer (18) sweeps the display volume (28). The three-dimensional calibration equipment (16) uses a hologram projected proximal to a desired object (164) to calibrate optical imaging devices (162a-162c) and to simplify the combination of the images from one or more optical imaging devices (162a-162c) into three-dimensional information. The three-dimensional image scanner (14) employs optical pulses (136, 138) and a non-linear optical mixer (128) to acquire three-dimensional images of a desired object (134). The three-dimensional image scanner (14) captures both the shape and color of a desired object (134).
Owner:STEVENS INSTITUTE OF TECHNOLOGY

Multiple Pulse, LIDAR Based 3-D Imaging

Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
Owner:VELODYNE LIDAR USA INC

System and method for providing three dimensional imaging in a network environment

A method is provided in one example embodiment and includes receiving data indicative of a personal position of an end user and receiving image data associated with an object. The image data can be captured by a first camera at a first angle and a second camera at a second angle. The method also includes synthesizing the image data in order to deliver a three-dimensional rendering of the object at a selected angle, which is based on the data indicative of the personal position of the end user. In more specific embodiments, the synthesizing is executed by a server configured to be coupled to a network. Video analytics can be used to determine the personal position of the end user. In other embodiments, the method includes determining an approximate time interval for the synthesizing of the image data and then delaying audio data based on the time interval.
Owner:CISCO TECH INC

Method and system for high resolution, ultra fast 3-d imaging

A high-speed three-dimensional imaging system includes a single lens camera subsystem with an active imaging element and CCD element, and a correlation processing subsystem. The active imaging element can be a rotating aperture which allows adjustable non-equilateral spacing between defocused images to achieve greater depth of field and higher sub-pixel displacement accuracy. A speckle pattern is projected onto an object and images of the resulting pattern are acquired from multiple angles. The images are locally cross-correlated using a sparse array image correlation technique and the surface is resolved by using relative camera position information to calculate the three-dimensional coordinates of each locally correlated region. Increased resolution and accuracy are provided by recursively correlating the images down to the level of individual points of light and using the Gaussian nature of the projected speckle pattern to determine subpixel displacement between images. Processing is done at very high-speeds by compressing the images before they are correlated. Correlation errors are eliminated during processing by a technique based on the multiplication of correlation table elements from one or more adjacent regions.
Owner:MASSACHUSETTS INST OF TECH

Integrated single photon emission computed tomography (SPECT)/transmission computed tomography (TCT) system for cardiac imaging

This invention features an integrated single photon emission computed tomography (SPECT) / transmission computed tomography (TCT) system for cardiac imaging including an open arc-shaped frame. A collimator system is shaped to approximately match the thoracic contour of patients having different sizes and weights and shaped to surround and position the collimator closely proximate a heart of a patient of said patients encompassed by at least one predetermined image volume for optimizing collimation of radiation photons emitted from the heart. An arc-shaped detector system is coupled to the collimator subsystem having a shape closely matching the shape of the collimator subsystem for detecting collimated radiation photons from the collimator subsystem and generating output electrical signals. A patient positioning subsystem positions a patient to a predetermined central longitudinal axis of the three-dimensional imaging volume and for intermittently and incrementally rotating the patient about the predetermined central longitudinal axis for generating a plurality of TCT images.
Owner:RUSH UNIV MEDICAL CENT

Phased array acoustic system for 3d imaging of moving parts

The invention relates to an ultrasound phased array imaging system comprising: probe (10) with a 2-D array of transducer elements (12) for acquiring 3-D ultrasound data of a volume of a body, including moving tissue and fluid flow; a beamforming system (10, 12, 14, 16) for emitting and receiving in real time ultrasound beams in said volume, which provides, in real time and in 3-D, more than one spatial receive beams signals for each transmission beam within an ensemble length of more than two temporal samples, among which the receive flow beam signals and the receive tissue beam signals are substantially temporally uncorrelated but spatially correlated; separation means (30) for processing in real time the receive beams signals, comprising adaptive spatial tissue filtering means using simultaneously more than one spatial receive beam signals acquired in 3-D within the ensemble length of more than two temporal samples, which separation means analyzes temporal variations of the respective successive receive signals and extracts flow receive beam signals from spatial combinations of receive beam signals; processing means (40, 50) and display means (62, 60) for processing flow Doppler signals and for displaying images based on said processed flow Doppler signals.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

System For The Three-Dimensional Imaging Of A Moving Joint

The invention relates to a system and a method for the generation of 3D images of a moving joint (1). A rotational X-ray device (10) generates projections of said joint from different directions while the simultaneous periodic movement of the joint (1) is recorded by a monitoring device (20). The generated X-ray projections are then classified according to the phase of joint movement to which they belong, and 3D images are reconstructed from X-ray projections of each class. Thus a 3D movie of the joint movement can be produced and shown on a monitor. The monitoring device (20) may particularly be realized by an apparatus that allows the forced movement of the joint (1) in synchronization with the generation of X-ray projections.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

LIDAR Based 3-D Imaging With Varying Illumination Field Density

Methods and systems for performing three dimensional LIDAR measurements with varying illumination field density are described herein. A LIDAR device includes a plurality of pulse illumination sources and corresponding detectors. The current pulses supplied to the pulse illumination sources are varied to reduce total energy consumption and heat generated by the LIDAR system. In some embodiments, the number of active pulse illumination sources is varied based on the orientation of the LIDAR device, the distance between the LIDAR device and an object detected by the LIDAR device, an indication of an operating temperature of the LIDAR device, or a combination thereof. In some embodiments, the number of active pulse illumination sources is varied based on the presence of an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

Imaging system and methods for cardiac analysis

InactiveUS20110206247A1Efficiently and accurately detect and viewLess tediousImage enhancementImage analysisGraphicsHuman anatomy
Imaging systems and methods for viewing medical images of human anatomy and, in particular, to a 3-dimensional imaging system that allows a user to efficiently and accurately detect and view coronary artery calcification as displayed graphically on a computer screen. In one aspect, a method for displaying medical images comprises obtaining an image dataset comprising anatomical image data (step 50), automatically grouping connected components in the image data to form groups of connected components (steps 50-57), and displaying the groups of connected components are distinguishable in the displayed image (58-59). The image dataset may comprise a volume data set and the groups of connected components comprise regions of neighboring voxels that share a similar property. The image dataset may comprise a 2-dimensional data set and the groups of connected components comprise regions of neighboring pixels that share a similar property. Different groups of connected components may be displayed in different colors and / or different opacities or certain groups may not be displayed at all.
Owner:VIATRONIX

LIDAR Based 3-D Imaging With Varying Illumination Intensity

Methods and systems for performing three dimensional LIDAR measurements with different illumination intensity patterns are described herein. Repetitive sequences of measurement pulses each having different illumination intensity patterns are emitted from a LIDAR system. One or more pulses of each repetitive sequence have a different illumination intensity than another pulse within the sequence. The illumination intensity patterns are varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the illumination intensity pattern is varied based on the orientation of the LIDAR device. In some examples, the illumination intensity pattern is varied based on the distance between a detected object and the LIDAR device. In some examples, the illumination intensity pattern is varied based on the presence of an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

Method for adjusting disparity in three-dimensional image and three-dimensional imaging device thereof

A method and apparatus for adjusting disparity in a 3D image and a 3D imaging device thereof are provided. The apparatus includes a disparity estimator which estimates disparity in an input 3D image and determines a disparity histogram pixel-wise; a disparity adjustor which analyzes energy of a parallax range of the disparity histogram and determines a disparity adjustment amount; and a 3D image reproducer which reproduces the 3D image based on the disparity adjustment amount. Accordingly, the disparity adjustment amount is determined by analyzing disparity energy of the disparity histogram, so a viewer may feel visual comfort and an optimal stereoscopic effect may be provided.
Owner:SAMSUNG ELECTRONICS CO LTD

Video system for three dimensional imaging and photogrammetry

A video system for providing an operator with a three dimensional stereoscopic image of the oral cavity of a patient is provided. The system includes an imaging unit for providing at least two stereoscopic images of the oral cavity, a pair of switchable shutters for alternatingly blocking the view of the left eye and the right eye of the operator, a synchronizing unit for synchronizing the switching of the pair of switchable shutters with the rate of generation of the two stereoscopic video images by the imaging unit and a video display for displaying the two stereoscopic images.
Owner:DENTOP SYST

Automatic Scene Calibration

ActiveUS20150181198A1Improve visibilityImproving and automating calibration processImage enhancementImage analysisVirtual coordinate systemsDimensional modeling
Described herein is a method of calibrating a three-dimensional imaging system. During calibration, a position and an orientation of the three-dimensional imaging system is determined with respect to a first parameter comprising a real world vertical direction (Vw) and to a second parameter comprising an origin of a three-dimensional scene captured by the imaging system. The first and second parameters are used to derive a calibration matrix (MC2w) which is used to convert measurements from a virtual coordinate system (Mc) of the three-dimensional imaging system into a real coordinate system (Mw) related to the real world. The calibration matrix (MC2w) is used to rectify measurements prior to signal processing. An inverse calibration matrix (Mw2c) is also determined. Continuous monitoring and adjustment of the setup of the three-dimensional imaging system is carried out and the calibration matrix (Mc2w) and its inverse (Mw2c) are adjusted accordingly.
Owner:SOFTKINETIC SOFTWARE

Optical techniques for the measurement of chest compression depth and other parameters during cpr

Embodiments of the present invention are related to a method and device for the determination and calculation of the depth of chest compressions during the administration of cardiopulmonary resuscitation (CPR). Embodiments use an optical sensor to monitor the distance that a victim's chest is displaced during each compression throughout the administration of CPR. The optical sensor is most commonly an image sensor such as a CMOS or CCD sensor, and more specifically a CMOS image sensor capable of three-dimensional imaging based on the time-of-flight principle. An infrared emitter may illuminate the victim's body and any visible piece of ground beside the victim. As the infrared light interacts with any surfaces it encounters, it is reflected and returns to the image sensor where the time of flight of the infrared light is calculated for every pixel in the image sensor. The distance data is used to gauge the effective displacement of the victim's chest. The optical sensors can be used to visualize the size of a patient and immediately gauge the body type and instruct the user accordingly. Furthermore, optical measurement techniques can be used to accurately measure chest rise during artificial respiration and ensure that proper ventilation is being administered in between compressions. In addition, optical measurements of the chest of the victim and the hands of the rescuer can be used to help ensure that the rescuer has positioned his or her hands in the anatomically correct location for effective CPR.
Owner:STRYKER CANADA ULC

Method and apparatus for generating structural pattern illumination

A three-dimensional imaging method and system illuminates an object to be imaged with a light pattern that is formed from two or more light sub-patterns. The sub-patterns can each encompass the visible light spectrum or can be spatially varying intensity sub-patterns that each correspond to a red, green, or blue component. The light pattern is generated by a slotted planar member or an optical filter.
Owner:TECHNEST HLDG

Transmitter patterns for multi beam reception

Provided herein is a method for use in medical applications that permits (1) affordable three-dimensional imaging of blood flow using a low-profile easily-attached transducer pad, (2) real-time blood-flow vector velocity, and (3) long-term unattended Doppler-ultrasound monitoring in spite of motion of the patient or pad. The pad and associated processor collects and Doppler processes ultrasound blood velocity data in a three dimensional region through the use of a planar phased array of piezoelectric elements. The invention locks onto and tracks the points in three-dimensional space that produce the locally maximum blood velocity signals. The integrated coordinates of points acquired by the accurate tracking process is used to form a three-dimensional map of blood vessels and provide a display that can be used to select multiple points of interest for expanded data collection and for long term continuous and unattended blood flow monitoring. The three dimensional map allows for the calculation of vector velocity from measured radial Doppler.A thinned array (greater than half-wavelength element spacing of the transducer array) is used to make a device of the present invention inexpensive and allow the pad to have a low profile (fewer connecting cables for a given spatial resolution). The full aperture is used for transmit and receive so that there is no loss of sensitivity (signal-to-noise ratio) or dynamic range. Utilizing more elements (extending the physical array) without increasing the number of active elements increases the angular field of view. A further increase is obtained by utilizing a convex non-planar surface.
Owner:PHYSIOSONICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products