Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2657 results about "Total energy" patented technology

Method and apparatus including altimeter and accelerometers for determining work performed by an individual

Method and calculations determine an individual's, or several individuals' simultaneous rates of oxygen consumption, maximum rates of oxygen consumption, heart rates, calorie expenditures, and METS (multiples of metabolic resting rate) in order to determine the amounts of work that is performed by the individual's body. A heart monitor measures the heart rate, and an accelerometer measures the acceleration of the body along one or more axes. An altimeter measures change in altitude, a glucose monitor measures glucose in tissue and blood, and thermometers, thermistors, or thermocouples measure body temperature. Data including body fat and blood pressure measurements are stored locally and transferred to a processor for calculation of the rate of physiological energy expenditure. Certain cardiovascular parameters are mathematically determined. Comparison of each axis response to the individual's moment can be used to identify the type of activity performed and the information may be used to accurately calculate total energy expenditure for each physical activity. Energy expenditure may be calculated by assigning a separate proportionality coefficient to each axis and tabulating the resulting filtered dynamic acceleration over time, or by comparison with previously predetermined expenditures for each activity type. A comparison of total energy expenditure from the current activity is compared with expenditure from a previous activity, or with a baseline expenditure rate to assess the level of current expenditure. A measure of the individual's cardio-vascular health may be obtained by monitoring the heart's responses to various types of activity and to total energy expended.
Owner:TELECOM MEDICAL

A joint optimization method for task unloading and resource allocation in a mobile edge computing network

The invention discloses a joint optimization method for task unloading and resource allocation in a mobile edge computing network, which comprises the following steps of 1, establishing an OFDMA (Orthogonal Frequency Division Multiple Access)-based multi-MEC (Mobile Edge Computing) base station and a multi-user scene model, wherein the MEC base station supports the multi-user access; 2, introducing an unloading decision mechanism; Meanwhile, constructing a local calculation model and a remote calculation model, selecting a user needing to perform calculation unloading, and establishing a calculation task unloading and resource allocation scheme based on minimum energy consumption under the condition of meeting the time delay constraint according to the conditions; 3, carrying out variablefusion on three mutually constrained optimization variables, namely an unloading decision variable, a wireless resource distribution variable and a computing resource distribution variable, so as to simplify the problem; and 4, obtaining an unloading decision and a resource allocation result which enable the total energy consumption of the user in the MEC system to be minimum through a branch andbound algorithm. The method has the advantage that the energy consumption of the system can be effectively reduced on the premise that strict time delay limitation is guaranteed.
Owner:NANJING UNIV OF POSTS & TELECOMM

Energy efficient wireless sensor network routing method

The invention discloses a routing method for the wireless sensor network with efficient energy, which is suitable for the layered sensor network structure. The routing method is composed of initialization, cluster building, adjacent clusters routing and routing maintenance, wherein, an initialization process of the protocol makes a Sink node obtain a topology and network average energy of the sensor network, and each node obtains hop counts from the node to the Sink node; in the stage of the cluster building, a repeated division method is used to divide sensor network clusters, the divided clusters are even, and a leader cluster node is undertaken by nodes with higher residual energy; the adjacent clusters routing uses an ant colony algorithm to determine the probability of using a link to send information according to the link pheromone concentration, and the link pheromone concentration is increased with the information transmission on the link and is reduced with the time going; and the routing maintenance stage is responsible for updating link pheromone concentration, and makes the nodes inside the cluster with higher residual energy undertake the leader cluster in turn. The routing method can reduce the consumption of the network total energy, can balance the consumption of the node energy and can prolong the network life cycle.
Owner:XIDIAN UNIV

A computing task unloading method based on edge computing and cloud computing collaboration

The invention provides a computing task unloading method based on edge computing and cloud computing collaboration. The computing task unloading method comprises the steps that variable parameters areset and initialized; Constructing respective time delay models and energy consumption models of the mobile terminal, the edge node and the remote cloud, obtaining a time delay expected value model and a total energy consumption model of the mobile terminal when the current task load is completely executed, and further obtaining a time delay expected value model and a total energy consumption model of all tasks in the total mobile terminal when the tasks are executed; Defining an optimal distribution problem and converting the optimal distribution problem into a convex optimization problem; And introducing a Lagrangian function to solve an optimal solution of task execution amounts of the terminal local machine, the edge node and the far-end cloud under the KKT constraint condition, so that each mobile terminal adjusts and executes according to the task execution amounts of the terminal local machine, the edge node and the far-end cloud, which are obtained by respectively and correspondingly solving the optimal solution. According to the implementation of the invention, the computing power and the power consumption limitation of the mobile terminal, the edge node and the remote cloud are comprehensively considered, and an optimal computing task unloading decision is realized.
Owner:SHENZHEN POWER SUPPLY BUREAU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products