Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3778 results about "Pulse sequence" patented technology

An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy.

Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidification

Methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed. In one preferred arrangement, a method includes the steps of generating a sequence of excimer laser pulses, controllably modulating each excimer laser pulse in the sequence to a predetermined fluence, homoginizing each modulated laser pulse in the sequence in a predetermined plane, masking portions of each homogenized fluence controlled laser pulse in the sequence with a two dimensional pattern of slits to generate a sequence of fluence controlled pulses of line patterned beamlets, each slit in the pattern of slits being sufficiently narrow to prevent inducement of significant nucleation in region of a silicon thin film sample irradiated by a beam let corresponding to the slit, irradiating an amorphous silicon thin film sample with the sequence of fluence controlled slit patterned beamlets to effect melting of portions thereof corresponding to each fluence controlled patterned beamlet pulse in the sequence of pulses of patterned beamlets, and controllably sequentially translating a relative position of the sample with respect to each of the fluence controlled pulse of slit patterned beamlets to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

System and method for distance measurement by inphase and quadrature signals in a radio system

A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined. The time delay indicates the total time of flight of the first and second pulse trains. The time delay comprises coarse and fine distance attributes. The coarse distance between the first and second radio transceivers is determined. The coarse distance represents the distance between the first and second radio transceivers in coarse resolution. An in phase (I) signal and a quadrature (Q) signal are produced from the time delay to determine the fine distance attribute. The fine distance indicates the distance between the first and second transceivers in fine resolution. The distance between the first and second radio transceivers is then determined from the coarse distance and the fine distance attributes.
Owner:HUMATICS CORP

Percutaneous intramuscular stimulation system

InactiveUS20060009816A1Retard and prevents muscle disuse atrophyMaintains muscle range-of-motionElectrotherapyArtificial respirationElectricityPulse sequence
A percutaneous, intramuscular stimulation system for therapeutic electrical stimulation of select muscles of a patient includes a plurality of intramuscular stimulation electrodes (50) for implantation directly into select muscles of a patient and an external battery-operated, microprocessor-based stimulation pulse train generator (10) for generating select electrical stimulation pulse train signals (T). A plurality of insulated electrode leads (40) percutaneously, electrically interconnect the plurality of intramuscular stimulation electrodes (50) to the external stimulation pulse train generator (10), respectively. The external pulse train generator (10) includes a plurality of electrical stimulation pulse train output channels (E) connected respectively to the plurality of percutaneous electrode leads (40) and input means (24,26,28) for operator selection of stimulation pulse train parameters (PA,PD,PF) for each of the stimulation pulse train output channels (E) independently of the other channels. Visual output means (20) provides visual output data to an operator of the pulse train generator (10). Non-volatile memory means (66,68) stores the stimulation pulse train parameters for each of the plurality of stimulation pulse train output channels (E). The generator (10) includes means for generating stimulation pulse train signals (100,102) with the selected pulse train parameters on each of the plurality of stimulation pulse train output channels (E) so that stimulus pulses of the pulse train signals having the select stimulation pulse train parameters pass between the intramuscular electrodes (50) respectively connected to the stimulation pulse train output channels (E) and a reference electrode (52).
Owner:NEUROCONTROL CORP

Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidification

Methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed. In one preferred arrangement, a method includes the steps of generating a sequence of excimer laser pulses, controllably modulating each excimer laser pulse in the sequence to a predetermined fluence, homoginizing each modulated laser pulse in the sequence in a predetermined plane, masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of slits to generate a sequence of fluence controlled pulses of line patterned beamlets, each slit in the pattern of slits being sufficiently narrow to prevent inducement of significant nucleation in region of a silicon thin film sample irradiated by a beamlet corresponding to the slit, irradiating an amorphous silicon thin film sample with the sequence of fluence controlled slit patterned beamilets to effect melting of portions thereof corresponding to each fluence controlled patterned beamlet pulse in the sequence of pulses of patterned beamlets, and controllably sequentially translating a relative position of the sample with respect to each of the fluence controlled pulse of slit patterned beamlets to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Apparatus and methods for enhancement of speech

A method for improving the intelligibility of an incoming telephone signal, including boosting loudness of at least one band of poorly heard frequencies of the signal within at least one band of intensities of the signal, the band lying below a predetermined intensity level at which telephone standard conformance testing is performed, thereby to generate a differentially boosted telephone signal. Alternatively or in addition, intelligibility of sibilants in a narrow band telephone signal is enhanced, by doubling the sampling rate of the narrow band signal by interpolation, thereby to provide a narrow band interpolated signal, generating a harmonic extrapolation signal by harmonically extrapolating from the narrow band interpolated signal thereby to estimate the missing portions of the telephone signal, the harmonic extrapolation comprising a sequence of pulses located at peaks of the interpolated signal, generating a missing energy estimator measure estimating energy missing at high frequency bands of the telephone signal, continuously modulating the amplitude of the pulses in said sequence of pulses based on said missing energy estimator measure, thereby to generate a modulated signal, passing the modulated signal through a shaping filter thereby to obtain a shaped signal, and summing the shaped signal with the interpolated signal.
Owner:DSP GROUP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products