Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2409 results about "Frequency difference" patented technology

Frequency difference is the difference in speeds between your clock and the NTP clock (effectively deemed to be perfect). If you clock gains a minute every hour (compared to the NTP server clock), that's the frequency difference. It's also called drift.

Method and apparatus for transmitting a signal using simultaneous FM and AM modulation

InactiveUS20060029397A1Wider flat top regionElectromagnetic transmittersFall timeCarrier signal
There is provided method for transmitting binary data contained in respective successive time cells, the data being in the form of an optical signal obtained by amplitude modulation and frequency modulation of an optical carrier wave, with a 0 bit data value having a 0 bit mean amplitude having a 0 bit amplitude time duration and a 0 bit frequency having a 0 bit frequency duration, and a 1 bit data value having a 1 bit mean amplitude having a 1 bit amplitude time duration and a 1 bit frequency having a 1 bit frequency duration; the improvement wherein: independently adjusting the 0 bit mean amplitude relative to the 1 bit mean amplitude; independently adjusting the 0 bit frequency relative to the 1 bit frequency; and independently adjusting time duration of the frequency profile of the 1 bit relative to the time duration of the amplitude profile of the 1 bit, whereby to extend the error-free propagation of the optical signal though a dispersive optical fiber beyond the dispersion limit. There is provided a method for transmitting Non-Return-To-Zero (NRZ) binary data contained in respective successive time cells, the data being in the form of an optical signal obtained by amplitude modulation and frequency modulation of an optical carrier wave, with a 0 bit data value having a 0 bit mean amplitude having a 0 bit amplitude time duration and a 0 bit frequency having a 0 bit frequency duration, and a 1 bit data value having a 1 bit mean amplitude having a 1 bit amplitude time duration and a 1 bit frequency having a 1 bit frequency duration; the improvement wherein: the phase across each 1 bit data value is substantially constant, and the phase of the carrier changes across each and every 0 bit by an amount equal to the product of the frequency difference between the 1 bit and the 0 bit and the duration of the 0 bit; whereby to extend the error-free propagation of the optical signal though a dispersive optical fiber beyond the dispersion limit. In accordance with one form of the present invention, there is provided a method for transmitting binary data contained in respective successive time cells, the data being in the form of an optical signal obtained by amplitude modulation and frequency modulation of an optical carrier wave, with a 0 bit data value having a 0 bit mean amplitude having a 0 bit amplitude time duration and a 0 bit frequency having a 0 bit frequency duration, and a 1 bit data value having a 1 bit mean amplitude having a 1 bit amplitude time duration and a 1 bit frequency having a 1 bit frequency duration; the improvement wherein: the amplitude profile of the 1 bit is substantially bell-shaped, and the frequency profile of the 1 bit is substantially square-shaped, with steeper rise and fall time and a wider flat top region; whereby to extend the error-free propagation of the optical signal though a dispersive optical fiber beyond the dispersion limit.
Owner:AZNA +1

Method for operating a radar system

In a method for operating a radar system, the object is to determine by simple means and at low cost the distance and/or the radial velocity of at least one target object with high resolution. For this purpose, in each measuring phase of the measurement process in the "pulse FMCW radar system", switchover between a transmission mode and a receiving mode is effected a multiple number of times and at short intervals of time. In the transmission mode, all receiving units of the radar system are switched off, while a pulse-shaped (frequency-modulated) transmission signal with time-successive transmission pulses having a specific pulse-on time and a specific carrier frequency is emitted from at least one transmitter unit of the radar system. In receiving mode, all transmitter units are switched off in the pulse-off times of the transmission pulses, while from at least one receiver unit all reflection signals originating from the last emitted transmission pulse are detected as received signal from the entire observation range before emission of the next transmission pulse. The distance and/or the radial velocity of the reflection objects is determined indirectly by the signal processing unit of the radar system by evaluation of the frequency difference and/or phase difference between the transmission signal and the received signal.
Owner:AUTOMOTIVE DISTANCE CONTROL SYST

Distributed network synchronization system

A distributed synchronization system for use in each node of a distributed asynchronous telecommunications network system that continually monitors and controls the flow of data through an implementing node to prevent dataflow errors due to phase and frequency differences in source and destination nodal clocks, and to control inter-nodal network latency so as to support the transmission of synchronous data. A synchronization data FIFO buffers predetermined fields or portions of fields of a unique frame packet received from a source node before retransmission to a destination node on the network. The frame packet includes a frame synchronization field indicating the beginning of a new frame packet; a payload field containing valid data; and a dead zone field providing bandwidth during which the present invention performs synchronization functions. A frame synchronization subsystem, implemented in a designated master node, guarantees that a frame is released at the beginning of an independently-determined frame regardless of network latency. A word resynchronization subsystem manages the flow of data through the data FIFO of each non-master node, receiving and storing data at the source node's clock rate and transmitting the data according to its own clock, thereby guaranteeing the efficient receipt and transmission of data between asynchronously-communicating nodes.
Owner:EXCEL SWITCHING

Communication system and method for sample rate converting data onto or from a network using a high speed frequency comparison technique

A communication system, source and destination ports of the communication system, and methodology is provided for transporting data in one of possibly three different ways. Data is transported across the network at a frame sample rate that can be the same as or different from the sample rate or master clock within the source port or the destination port. If the sample rate of the source port is known, the sample rate of the destination port can be created using a PLL within the destination port and simply employing a phase comparator in the source port. The phase comparator forwards the phase or frequency difference of the network transfer rate and the source sample rate to the destination port, which then generates a local clock equivalent to the source which then compiles audio data being played at the same rate in which it was sampled at the source. Where economically feasible, sample rate conversion can be used at the source. However, sample rate conversion at the destination is preferred if the source sample rate is forwarded across the network relative to the frame transfer rate of the synchronous network. The sample rate converter simply produces a play rate from the transmitted information at the destination. Again, however, sample rate conversion compares relative phase difference changes similar to the phase difference compared in the digital PLL mode. As a further alternative, sample rates within the source and destination ports can be derived from the network frame rate using fractional dividers in the source and destination ports.
Owner:STANDRD MICROSYSTEMS CORPORATION

Digital Phase-Locked Loop Clock System

A clock system includes a digital phase/frequency detector (DPFD), a buffer, a digitally-controlled oscillator (DCO) including a sigma-delta modulator (SDM), an adder, a first frequency divider. The DPFD may have a first input for a reference input clock and a second input for a feedback signal, and outputting a difference signal representing a phase and/or frequency difference between the reference input clock and the feedback signal. The buffer may be coupled to the DPFD for accumulating the difference signal over time. The sigma-delta modulator (SDM) may have a control input coupled to the buffer. The adder may have inputs coupled to the (SDM) and a source of an integer control word. The first frequency divider may have an input for a clock signal and a control input coupled to the adder, the DCO generating an output clock signal having an average frequency representing a frequency of the input clock signal divided by (N+F/M), wherein N is determined by the integer control word and F/M is determined by an output of the SDM. The system clock also may include a phase-locked loop (PLL) including a phase/frequency detector that has a first input coupled to the output of the DCO and a second input that is phase-locked to the first input, and a second frequency divider coupled from the second input of the PLL to the second input of the DPFD.
Owner:ANALOG DEVICES INC

Quantum processing device

ActiveUS20140291490A1High efficiency in photon collectionAttenuation bandwidthQuantum computersNanoinformaticsPhoton emissionPhoton detection
A device for achieving multi-photon interference, said device comprising: at least two solid state photon emitters, each solid state photon emitter comprising nuclear and electron spin states coupled together, each solid state photon emitter being configured to produce photon emission comprising a photon emission peak, wherein the photon emission peaks from different solid state photon emitters have a first frequency difference between peak intensities, and wherein the electron spin states of each solid state photon emitter are resolvable; an excitation arrangement configured to individually address the at least two solid state photon emitters; a plurality of optical out coupling structures wherein each solid state photon emitter is provided with an associated optical out coupling structure; a tuning arrangement configured to reduce the first frequency difference between the peak intensities of the photon emission peaks from the at least two solid state photon emitters to a second frequency difference which is smaller than the first frequency difference; a photon interference arrangement configured to overlap photon emissions from the at least two solid state emitters after tuning; and a detector arrangement configured to detect photon emissions from the at least two solid state emitters after tuning and passing through the photon interference arrangement, wherein the detector arrangement is configured to resolve sufficiently small differences in photon detection times that tuned photon emissions from the at least two solid state emitters are quantum mechanically indistinguishable resulting in quantum interference between indistinguishable photon emissions from different solid state photon emitters.
Owner:ELEMENT SIX TECH LTD

Frequency-dependent phase pre-distortion for reducing spurious emissions in communication networks

A frequency-dependent phase pre-distortion technique is applied to an input signal in order to reduce spurious emissions resulting from subsequent amplification of the signal. In preferred embodiments, the frequency-dependent phase pre-distortion of the present invention is implemented in combination with the (frequency-independent) magnitude and phase pre-distortion technique described in U.S. patent application Ser. No. 09/395,490 (“the '490 application”), where one or more frequency-dependent phase pre-distortion signals are either advanced or delayed relative to the main pre-distorted signal generated in accordance with the '490 application. Each frequency-dependent phase pre-distortion signal is preferably based on a 180° phase difference between a pair of (critical) frequencies located outside (e.g., one on each side) of the signal channel. The magnitude of the frequency difference between the pair of critical frequencies dictates the magnitude of the desired advancement or delay in time of the frequency-dependent pre-distortion signal relative to the main pre-distorted signal. Embodiments of the present invention may be implemented in either the baseband domain or the RF domain. Implementations may also be based on look-up tables that are adaptively updated to ensure optimal performance over time.
Owner:COMMSCOPE TECH LLC

High precision speed-measuring distance-measuring radar system and method

The invention relates to a high precision speed and distance measuring laser radar system and a speed and distance measuring method. The basic principle of the invention is as follows: linear chirp modulation and pseudo-random code modulation of lasers are performed; most lasers after modulation are taken as outgoing lasers and transmitted by a telescope; a small part of the lasers is taken as local oscillator beams and used for coherent detection; laser echo signals are divided into two parts; distance information is obtained after related operation of one part of the laser echo signals and original pseudo-random codes; the frequency difference of the local oscillator beams and echo signal beams is obtained after coherent detection of the other part of the laser echo signals and the local oscillator beams and pulse compression, and simultaneously comprises the distance information and Doppler shift; the Doppler shift is obtained through mathematical manipulation, thereby speed information is obtained. The high precision speed and distance measuring laser radar system and a speed and distance measuring method of the invention is characterized in that the speed information and the distance information of a target can be obtained with high precision.
Owner:HANGZHOU ZHONGKE TIANWEI TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products