Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

549 results about "Multilateration" patented technology

Multilateration is a navigation and surveillance technique based on the measurement of the times of arrival (TOAs) of energy waves (radio, acoustic, seismic, etc.) having a known propagation speed. The time origin for the TOAs is arbitrary. (By the reciprocity principle, any conceptual method that can be used for navigation can also be used for surveillance, and vice versa.) For surveillance, a subject of interest – in cooperative surveillance, often a vehicle – transmits to multiple receiving stations having synchronized 'clocks'. For navigation, multiple synchronized stations transmit to a user receiver. To find the coordinates of a user in n dimensions (typically, n = 2 or n = 3), at least n + 1 TOAs must be measured. Multilateration systems are also called hyperbolic systems, for reasons discussed below.

Method and system for mobile station positioning in cellular communication networks

A system of cell phone positioning in real time is provided with specialized location device installations on multiplicity of base stations BSs in CDMA and TDMA cellular communication networks. The purpose of the positioning system is to enable tracking and locating large quantities of anonymous mobile cell phones MS in any number of network cells to be used for real time traffic-forecasting systems, emergency services E911, and other client-initiated position requests. Location data thus obtained can be continuously updated from vehicular-based cellular phones, collected, processed and used as a basis for input to intelligent transportation systems, such as real time urban traffic guidance for vehicular congestion and intelligent traffic control systems. The system is capable of covering large urban geographical areas and number of independent cell structures serving thousands of mobile cell phone clients. It is an independent plug-in solution with specialized synchronized location device installations in each cell BS. Centrally located specialized location software based on Time of Arrival (TOA) and Time Difference of Arrival (TDOA) methods for high speed location processing in central Location Database Server (LDS). The inventive system consists of number of component functions: Operator-initiated functions, location device functions and software enabled positioning functions.
Owner:MAKOR ISSUES & RIGHTS

Self-charging power controlled system for locating animals by GPS

A portable tracking unit attached to a movable object, such as an animal's collar, includes a GPS receiver to receive GPS signals from multiple satellites for use in multilateration calculations in determining the current position of the tracking unit. A processor in the tracking unit processes the GPS data signals to determine the tracking unit's position, and a GSM mobile wireless transmitter is used to transmit the geographic coordinates of the tracking unit to a remote monitoring unit. The tracking unit also includes a motion detector that outputs a motion signal when the animal is on the move. A motion signal “wakes up” the processor that wakes up the GPS receiver and the GSM transmitter to begin calculating and transmitting the geographic coordinates of the tracking unit. The tracking unit also includes electrical generators configured to transduce mechanical motion of the tracking unit into electrical energy to recharge a battery and power devices. The portable tracking unit is fabricated monolithically in silicon with circuitry integrated with silicon micro-machined motion sensor, as well as power generators, and packaged through silicon wafer bonding. A remote computing device receives the geographic coordinates of the tracking device and indicates to a user the position of the tracking device in relation to a map. An alert may also be provided if the location of the tracking device is outside a programmed safe zone.
Owner:CARBON GLOBAL

Method and system for synchronizing location finding measurements in a wireless local area network

A method and system for synchronizing location finding measurements in a wireless local area network (WLAN) provides a low cost mechanism for correcting location measurements within a WLAN location finding system. Multiple location receivers compute the time-of-arrival (TOA) of a reference transmitter signal, which is generally a beacon signal. The TOAs are collected and reported to a master unit that contains stored predetermined position information for the location receivers. The master unit computes the time-differences-of-arrival (TDOA) between multiple receivers and computes differences between the measured TDOAs and theoretical TDOAs computed in conformity with the predetermined position of each location receiver. The deviations between theoretical and measured TDOAs are collected in a statistical sample set and Kalman filters are used to produce a model of location receiver timebase offset and drift over multiple received beacon signals. The filter outputs are used to then either correct subsequent TDOA measurements for each location receiver, improving the accuracy of subsequent and/or prior TDOA measurements, or commands are sent to the location receivers to calibrate the timebases within the location receivers in order to improve the accuracy of subsequent TOA measurements.
Owner:AEROSCOUT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products