Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1086results about How to "Optimization range" patented technology

Resource scheduling method and system

Embodiments of the invention are concerned with scheduling resources to perform tasks requiring a plurality of capabilities or capabilities and capacities, and has particular application to highly changeable or uncertain environments in which the status and the composition of tasks and/or resources changes frequently. Embodiments provide a method for use in a scheduling process for scheduling allocation of resources to a task, each resource having a plurality of attributes, wherein the task has one or more operational constraints including a required plurality of capabilities, and a performance condition associated therewith. The method comprises: receiving data indicative of a change to the status of the scheduling process; in response to receipt of the status data, reviewing the attributes of individual resources so as to identify combinations of resources able to collectively satisfy said capability requirements of the task; evaluating each identified combination of resources in accordance with a performance algorithm so as to identify an associated performance cost; selecting a combination of resources whose identified performance cost meets the performance condition; and scheduling said task on the basis of said selected combination of resources. In embodiments of this aspect of the invention, changes to resource configurations are effected as part of the scheduling process. These changes can be made dynamically, in response to the occurrence of events that have a bearing on the scheduling process, and involve aggregating resources together so as to create, essentially, a new resource pool from which selection can be made.
Owner:TRIMBLE MRM

Reactive sensor modules using pade' approximant based compensation and providing module-sourced excitation

Reactive sensors typically exhibit nonlinear response to the combination of an excitational signal (e.g., sinusoidally oscillating signal) and a physical parameter under measure (e.g., position of magnetic core member). Such sensors are typically sensitive to temperature variation. Systems and methods are disclosed for compensating for the nonlinear and / or temperature dependant behavior of reactive sensors and for calibrating the post-compensation output signals relative to known samples of the physical parameter under measure (e.g., position). One class of embodiments comprises a housing containing at least part of a reactive sensor, a monolithic integrated circuit and a timing reference (e.g., an oscillator crystal). The integrated circuit includes a waveform generator for generating a sensor exciting signal, a detector for detecting the response of the sensor to the combination of the exciting signal and the under-measure physical parameter, a temperature compensating unit and a Pade' Approximant based, nonlinearity compensating unit. The temperature compensating unit and the Pade' Approximant nonlinearity compensating unit are tuned by use of digitally programmed coefficients. The coefficients calibrate the final output as well as compensating for nonlinearity and temperature sensitivity. A highly accurate measurement of the under-measure physical parameter is made possible even though each of the sensor and compensating circuitry may be relatively simple, compact, and low in cost.
Owner:SEMICON COMPONENTS IND LLC +1

Electrical generator having an oscillator containing a freely moving internal element to improve generator effectiveness

An apparatus and method for providing electrical energy to an electrical device by deriving the electrical energy from motion of the device. In one embodiment, the inventive apparatus includes a novel kinetic electrical power generator (KEPG) consisting of an inventive oscillating weight having an internal cavity with a freely movable acceleration element disposed therein, resulting in improved acceleration and oscillation capabilities and lower motion threshold for the weight, a system for converting the weight's oscillating motion into rotational motion, and an electromechanical transducer system for generating electrical energy from the rotational motion. The novel KEPG includes components for modifying the electrical energy for storing and/or feeding the modified electrical energy to the electrical device. Optional components may be included for using the modified electrical energy to recharge one or more rechargeable batteries used in an electric device. Alternate advantageous embodiments of the inventive apparatus include, but are not limited to: a KEPG with multiple inventive oscillating weights to increase velocity and frequency of desirable rotational motion, and a KEPG system utilizing multiple electrically coupled KEPG sub-systems.
Owner:POWER ESTIMATE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products