Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

14915 results about "Magnetic core" patented technology

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.

Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device

The present invention provides an amplifying repeater, which is constructed in such a manner that a ferrite core is inserted into a coil with a pre-determined number of winds to increase an induced electromotive force caused by an increase in flux linkage using a time-varying magnetic field of electromagnetic waves at a position distant from various electromagnetic wave generating sources by a predetermined distance and the induction coil and a variable condenser for inducing resonance are connected to each other to increase current while reducing a resistant component existing in the induction coil to intensify and amplify the magnetic field of electromagnetic waves. Furthermore, the present invention provides a wireless power conversion charging device using the magnetic field of electromagnetic waves, which is located between an electromagnetic wave generating source transmitter and a receiving coil or attached to the transmitter and receiving coil. The wireless power conversion charging device includes a rectifying diode for rectifying an electromotive force induced in a construction in which a resonance and impedance matching variable condenser is connected to a coil in series or in parallel in order to transmit maximum induced power to a charging battery that is a load using electromagnetic waves amplified by the amplifying repeater, and a smoothing condenser for smoothing the rectified voltage. Accordingly, charging power required for various small power electronic devices can be provided and power can be supplied to various loads.
Owner:JC PROTEK +1

Reactive sensor modules using pade' approximant based compensation and providing module-sourced excitation

Reactive sensors typically exhibit nonlinear response to the combination of an excitational signal (e.g., sinusoidally oscillating signal) and a physical parameter under measure (e.g., position of magnetic core member). Such sensors are typically sensitive to temperature variation. Systems and methods are disclosed for compensating for the nonlinear and / or temperature dependant behavior of reactive sensors and for calibrating the post-compensation output signals relative to known samples of the physical parameter under measure (e.g., position). One class of embodiments comprises a housing containing at least part of a reactive sensor, a monolithic integrated circuit and a timing reference (e.g., an oscillator crystal). The integrated circuit includes a waveform generator for generating a sensor exciting signal, a detector for detecting the response of the sensor to the combination of the exciting signal and the under-measure physical parameter, a temperature compensating unit and a Pade' Approximant based, nonlinearity compensating unit. The temperature compensating unit and the Pade' Approximant nonlinearity compensating unit are tuned by use of digitally programmed coefficients. The coefficients calibrate the final output as well as compensating for nonlinearity and temperature sensitivity. A highly accurate measurement of the under-measure physical parameter is made possible even though each of the sensor and compensating circuitry may be relatively simple, compact, and low in cost.
Owner:SEMICON COMPONENTS IND LLC +1

Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device

The present invention provides an amplifying repeater, which is constructed in such a manner that a ferrite core is inserted into a coil with a pre-determined number of winds to increase an induced electromotive force caused by an increase in flux linkage using a time-varying magnetic field of electromagnetic waves at a position distant from various electromagnetic wave generating sources by a predetermined distance and the induction coil and a variable condenser for inducing resonance are connected to each other to increase current while reducing a resistant component existing in the induction coil to intensify and amplify the magnetic field of electromagnetic waves. Furthermore, the present invention provides a wireless power conversion charging device using the magnetic field of electromagnetic waves, which is located between an electromagnetic wave generating source transmitter and a receiving coil or attached to the transmitter and receiving coil. The wireless power conversion charging device includes a rectifying diode for rectifying an electromotive force induced in a construction in which a resonance and impedance matching variable condenser is connected to a coil in series or in parallel in order to transmit maximum induced power to a charging battery that is a load using electromagnetic waves amplified by the amplifying repeater, and a smoothing condenser for smoothing the rectified voltage. Accordingly, charging power required for various small power electronic devices can be provided and power can be supplied to various loads.
Owner:JC PROTEK +1

Inductive RF plasma source with external discharge bridge

An RF ICP source having a housing with a flanged cover. The interior of the housing serves for confining plasma generated by the plasma source. The cover has at least two openings which are connected by a hollow C-shaped bridge portion which is located outside the housing. The hollow C-shaped bridge portion is embraced by an annular ferrite core having a winding connected to an electric power supply source for generating a discharge current which flows through the bridge portion and through the interior of the housing. The discharge current is sufficient for inducing plasma in the interior of the housing which is supplied with a gaseous working medium. The power source operates on a relatively low frequency of 60 KHz or higher and has a power from several watt to several kilowatt. In order to provide a uniform plasma distribution and uniform plasma treatment, the cover may support a plurality of bridges. Individual control of the inductors on each bridge allows for plasma redistributing. The housing of the working chamber can be divided into two section for simultaneous treatment of two objects such as semiconductor substrates. A plate that divides the working chamber into two sections may have ferrite cores built into the plate around the bridges. In another embodiment, the flow of gaseous working medium is supplied via a tube connected to the bridge portion of the source.
Owner:ADVANCED ENERGY IND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products