Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1836results about "Printed inductances" patented technology

Method and apparatus for wireless power transmission

Embodiments of the invention relate to a method and system for transferring power wirelessly to electronic devices. The system can utilize magnetic coupling between two coils at close proximity to transfer sufficient power to charge an electronic device. Embodiments of the invention pertain to an array of spiral coils that can be used to transmit power for transfer to receiver coils. Potential applications of this technology include charging consumer electronic devices (cell phones, laptops, PDAs, etc), developing hermetically sealed devices for extreme environments, and less invasive transcutaneous energy transfer (TET) systems. Various embodiments of the subject system can be referred to as PowerPad system. Embodiments can incorporate one or more of the following: planar inductors, PCB transformers, and very high frequency power supplies. Embodiments of the invention also pertain to planar inductors having characteristics that allow the production of even magnetic field, as well as systems that incorporate such planar inductors.
Owner:QUALCOMM INC

Planar resonator for wireless power transfer

A planar resonator and method of manufacture provides contactless power transfer using at least two electrically isolated axis aligned conductive across the transfer interface in a coupled inductor or transformer configuration. Signal or power transfer is then accomplished by coupling of magnetic flux. The coupling of electric flux is also accomplished across a same interface and driven with the same conductive spiral-wound conductors. An interface of energy transfer(IOET) has a first spiral-shaped conductor arranged on the top surface of said IOET; a second spiral-shaped conductor arranged on the bottom surface of said IOET, has a vertical axis aligned with the first spiral-shaped conductor. The IOET and the first and second spiral-shaped conductors have a predetermined self-resonant frequency. The planar power resonator stores electric energy in the IOET, and at predetermined frequencies, the arrangement of the first and second spiral-shaped conductors and the IOET permits transfers of magnetic flux and electrical energy between the first and second spirals across the IOET. The resonator facilitates contactless battery charging in devices such as cellphones and wearable electronics where the resonator can be woven into fabric or attached to a person's clothes.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Inductive battery charger system with primary transformer windings formed in a multi-layer structure

There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and parallel to the charging surface is at least one and preferably an array of primary windings that couple energy inductively to a secondary winding formed in the device to be recharged. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
Owner:CITY UNIVERSITY OF HONG KONG

Portable contact-less power transfer devices and rechargeable batteries

There is disclosed a system and method for transferring power without requiring direct electrical conductive contacts. There is provided a primary unit having a power supply and a substantially laminar charging surface having at least one conductor that generates an electromagnetic field when a current flows therethrough and having an charging area defined within a perimeter of the surface, the at least one conductor being arranged such that electromagnetic field lines generated by the at least one conductor are substantially parallel to the plane of the surface or at least subtend an angle of 45° or less to the surface within the charging area; and at least one secondary device including at least one conductor that may be wound about a core. Because the electromagnetic field is spread over the charging area and is generally parallel or near-parallel thereto, coupling with flat secondary devices such as mobile telephones and the like is significantly improved in various orientations thereof.
Owner:PHILIPS IP VENTURES BV

Signal isolators using micro-transformers

A logic signal isolator comprising a transformer having a primary winding and a secondary winding; a transmitter circuit which drives said primary winding in response to a received logic signal, such that in response to a first type of edge in the logic signal, a signal of a first predetermined type is supplied to the primary winding and in response to a second type of edge in the logic signal, a signal of a second predetermined type is supplied to said primary winding, the primary winding and the transmitter being referenced to a first ground; and the secondary winding being referenced to a second ground which is galvanically isolated from the first ground and said secondary winding supplying to a receiver circuit signals received in correspondence to the signals provided to the primary winding, the receiver reconstructing the received logic signal from the received signals.
Owner:ANALOG DEVICES INC

Precision inductive devices and methods

A low cost, low profile, small size and high performance inductive device for use in, e.g., electronic circuits. In one exemplary embodiment, the device includes a ferrite core comprising multiple inductors and optimized for electrical and magnetic performance. Improvements in performance are obtained by, inter alia, control of the properties of the gap region(s) as well as placement of the windings relative to the gap. The magnetic path properties of the inductors at the ends of the device are also optionally controllable so as to provide precise matching of inductances. Optionally, the device is also self-leaded, thereby simplifying its installation and mating to a parent device (e.g., PCB). Methods for manufacturing and utilizing the device are also disclosed.
Owner:PULSE ELECTRONICS

Battery charging system

There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and parallel to the charging surface is at least one and preferably an array of primary windings that couple energy inductively to a secondary winding formed in the device to be recharged. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
Owner:CITY UNIVERSITY OF HONG KONG

Wireless IC device and wireless IC device composite component

A wireless IC device includes a wireless IC chip, a feed circuit board having the wireless IC chip mounted thereon and including a feed circuit including inductance elements, and a radiation plate electromagnetically coupled to the inductance elements in the feed circuit. A high-permeability magnetic body made of a high-permeability magnetic material is provided in the feed circuit board and a portion of the inductance elements is provided in the high-permeability magnetic body.
Owner:MURATA MFG CO LTD

Multiphase voltage regulator having coupled inductors with reduced winding resistance

A multiple phase buck converter or boost converter, or buck-boost converter has an inductor in each phase. The inductors are inversely coupled. In a first embodiment, the converter includes a toroidal magnetic core with inductors extending under and over opposite sides of the toroidal magnetic core. The coupled inductors are thereby inversely coupled and have a relatively low ohmic resistance. In a second embodiment, the converter comprises a ladder-shaped magnetic core (i.e. having parallel sides, and connecting rungs). In this case, the inductors extend under the sides, and over the rungs. Each inductor is disposed over a separate rung. The ladder-shaped magnetic core is preferably disposed flat on a circuit board. Inverse coupling and low ohmic resistance are also provided in the second embodiment having the ladder structure.
Owner:VIRGINIA TECH INTPROP INC

Tunable embedded inductor devices

The invention provides tunable embedded high frequency inductor devices. The inductor device comprises a dielectric substrate. A first conductive line is disposed on a first surface of the dielectric substrate. A second conductive line is disposed on a second surface of the dielectric substrate. An interconnection is disposed perforating the dielectric substrate and connecting the first conductive line with the second conductive line. A coupling region is defined between the first and the second conductive lines. A conductive plug connecting the first conductive line and the second line is disposed in the coupling region. Alternatively, an opening is disposed in the first and second conductive lines to tune inductance of the inductor.
Owner:IND TECH RES INST

Radio frequency IC device

A radio frequency IC device includes a radio frequency IC chip, a feeder circuit substrate, and a radiating plate. The feeder circuit substrate includes a feeder circuit that electrically connects to the radio IC chip and that includes a resonance circuit and / or a matching circuit including inductance elements. The feeder circuit substrate is bonded to the radiating plate, which radiates a transmission signal supplied from the feeder circuit and supplies a received signal to the feeder circuit. The inductance elements are arranged in spiral patterns wound in opposite directions and couple to each other in opposite phases. The radio frequency IC device is able to obtain a radio frequency IC device that is not susceptible to being affected by a usage environment, minimizes variations in radiation characteristics, and can be used in a wide frequency band.
Owner:MURATA MFG CO LTD

Resin composition, cured resin, sheet-like cured resin, laminated body, prepreg, electronic parts and multilayer boards

The invention provides electronic parts which comprise a composite dielectric layer composed of an organic insulating material and a dielectric ceramic powder having a larger relative dielectric constant than the organic insulating material, and which also comprise conductive element sections forming inductor elements, etc., wherein the organic insulating material comprises a cured resin obtained by curing reaction of an epoxy resin with an active ester compound obtained by reaction between a compound with two or more carboxyl groups and a compound with a phenolic hydroxyl group. The dielectric ceramic powders of the described electronic parts have larger relative dielectric constants than the organic insulating materials, and the organic insulating materials have low dielectric loss tangents. It is possible to adequately reduce time-dependent dielectric constant changes in the high-frequency range of 100 MHz and above even with prolonged use at high temperatures of 100° C. and higher, while it is also possible to satisfactorily prevent deformation and other damage to the electronic parts during their handling.
Owner:TDK CORPARATION

Method for fabricating a thin film inductor

A method is provided for the manufacture of precision electronic components such as resistors, inductors, and capacitors on a polymer or ceramic surface. The electronic components can be deposited and trimmed to precise or matched values without having precise depositions of all of the pre-patterned materials. Thin film electronic components are deposited on a surface, parameter values are measured or estimated, a correction offset file is generated, and the components are trimmed using adaptive lithography to a very close tolerance. A computer program can be used to enable the adjustment of electronic components by techniques such as changing the physical length of an inductor coil or resistor lead, or by changing a capacitor plate area.
Owner:GENERAL ELECTRIC CO

Thin film structures with negative inductance and methods for fabricating inductors comprising the same

An inductor structure comprising a substrate and a planar conductor structure on a surface of the substrate, and methods for fabricating an inductor structure. The planar conductor structure may comprise a vertical stack of three or more multilayer films. Each multilayer film may comprise a first layer of a first metal, defining a first vertical thickness, and a second layer of a second metal, defining a second vertical thickness. The metals and thicknesses are chosen such that the inductor exhibits a negative electrical self-inductance when an electrical signal is transmitted from a first contact point to a second contact point.
Owner:UNIV OF DAYTON

Integrated circuits with inductors in multiple conductive layers

Two inductors formed in multiple layers of conductive layers of integrated circuits are disclosed. Symmetric portions of a first inductor and a second inductor are formed in two or more conductive layers. Portions of the first inductor in adjacent conductive layers are connected by vias, and portions of the second inductor in adjacent conductive layers are connected by vias. The first and second inductor portions form a substantially loop-shaped structure in each conductive layer. The first and second inductor vias may be positioned at the same position within the substantially loop-shaped inductor structure by alternating inner and outer radiuses, or the vias for the second inductor may be positioned opposite the vias for the first inductor within the substantially loop-shaped inductor structure, using notches in the first and second inductor portions.
Owner:INFINEON TECH AG

Integrated electronic device and method of making the same

An integrated electronic device includes a substrate, passive components, pads for external connection, and three-dimensional wiring. The passive components includes a multi-stage coil inductor provided on the substrate. The multi-stage coil inductor has a plurality of coils disposed in several layers. Mutually adjacent coil wires are spaced-apart from each other. The three-dimensional wiring includes a first wiring portion which extends on the substrate, a second wiring portion which extends off the substrate but along the substrate, and a third wiring portion connecting with the first wiring portion and the second wiring portion.
Owner:TAIYO YUDEN KK

Compact inductor with stacked via magnetic cores for integrated circuits

An on-chip inductor device for Integrated Circuits utilizes coils on a plurality of metal layers of the IC with electrical connectors between the coils and a magnetic core for the inductor of stacked vias running between the coils. The magnetic core is made from a series of stacked vias which are deposited between each metal layer of the IC having a coil. The magnetic core desirably includes an array of magnetic bars comprising the magnetic core. The via material of the magnetic core may be both magnetic and electrically conductive. The magnetic and electrically conductive via material may also be used for the planar coil electrical connectors or other electrically conductive parts of the IC, or both, thereby lessening fabrication steps. Films of magnetic material may be formed at the ends of the inductor to provide a closed magnetic circuit for the inductor. A high Q factor inductor of small (e.g., transistor) size is thus obtained. The materials and processes which enable the on-chip inductor device are compatible with ordinary IC fabrication methods.
Owner:ILLINOIS INSTITUTE OF TECHNOLOGY

Variable inductor for integrated circuit and printed circuit board

A variable inductor can be formed on an integrated circuit with a primary conductor, a secondary conductor, and a switch. The primary conductor implements an inductor and may be formed in various patterns (e.g., a spiral). The secondary conductor forms a loop in proximity to (e.g., on the outside of) the primary conductor. The switch couples in series with the secondary conductor and opens or closes the loop. The inductance of the inductor is varied by closing and opening the loop with the switch. A current source may also be coupled in series with the secondary conductor and used to control the current flow in the secondary conductor to either increase or decrease the inductance. Multiple loops may be formed to change the inductance in more than two discrete steps. The variable inductor may be used for various applications such as filters, VCOs, and impedance matching networks.
Owner:QUALCOMM INC

Methods for manufacturing RFID tags and structures formed therefrom

Radio frequency identification (RFID) tags and processes for manufacturing the same. The RFID device generally includes (1) a metal antenna and / or inductor; (2) a dielectric layer thereon, to support and insulate integrated circuitry from the metal antenna and / or inductor; (3) a plurality of diodes and a plurality of transistors on the dielectric layer, the diodes having at least one layer in common with the transistors; and (4) a plurality of capacitors in electrical communication with the metal antenna and / or inductor and at least some of the diodes, the plurality of capacitors having at least one layer in common with the plurality of diodes and / or with contacts to the diodes and transistors. The method preferably integrates liquid silicon-containing ink deposition into a cost effective, integrated manufacturing process for the manufacture of RFID circuits. Furthermore, the present RFID tags generally provide higher performance (e.g., improved electrical characteristics) as compared to tags containing organic electronic devices.
Owner:ENSURGE MICROPOWER ASA

Inductor element and method for production thereof, and semiconductor module with inductor element

An inductor element includes a substrate of magnetic material, a coil, and a layer of magnetic material. The coil of conductive material is formed on the substrate. The layer of magnetic material is so formed by aerosol deposition as to enclose the coil on the substrate of magnetic material.
Owner:SONY CORP

Electronic device and RF module

A parallel resonant circuit is realized by stacking first to fourth wiring patterns each having at least an inductance element. One of the adjacent first and second wiring patterns is set to a signal input node and the other thereof is set to a signal output node. Then, the signal input node is connected to the signal output node via inductance elements of the first wiring pattern, third wiring pattern, fourth wiring pattern and second wiring pattern in order. By adjacently forming wiring layers of the signal input and output nodes, a capacitance value between the input and output nodes is increased compared to that when they are separated. Also, by increasing the line width of the first and second wiring patterns, the capacitance value can be further increased. Therefore, it is possible to achieve a large capacitance value in a small area and downsizing of the electronic device.
Owner:RENESAS ELECTRONICS CORP

Power receiving device, and electronic apparatus and non-contact charger using the same

Disclosed is an electronic apparatus (1) comprising a power receiving device (2) and an electronic apparatus main body (3). The power receiving device (2) comprises a power receiving coil (11) having a spiral coil, a rectifier (12) and a secondary battery (13). The electronic apparatus main body (3) comprises an electronic device (14) and a circuit board (15). A magnetic foil (16) is arranged in at least one position between the spiral coil (11) and the secondary battery (13), the rectifier (12), the electronic device (14) or the circuit board (15). The magnetic foil (16) has a value expressed as the product of the saturation flux density MS and the thickness t, namely Ms·t, of not less than 15.
Owner:KK TOSHIBA +1

Method of and inductor layout for reduced VCO coupling

Method and system are disclosed for reducing mutual EM coupling between VCO resonators and for implementing the same on a single semiconductor chip. The method and system involve using inductors that are substantially symmetrical about their horizontal and / or their vertical axes and providing current to the inductors in a way so that the resulting magnetic field components tend to cancel each other by virtue of the symmetry. In addition, two such inductors may be placed near each other and oriented in a way so that the induced current in the second inductor due to the magnetic field originating from first inductor is significantly reduced. The inductors may be 8-shaped, four-leaf clover-shaped, single-turn, multi-turn, rotated relative to one another, and / or vertically offset relative to one another. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:TELEFON AB LM ERICSSON (PUBL)

Method of manufacturing multi-layer coil and multi-layer coil device

A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Owner:CYNTEC

Fabrication of inductors in transformer based tank circuitry

Placing inductors or resistors in parallel causes the combined value of inductance or resistance to decrease according to the parallel combination rule. This invention decreases the parasitic resistance of an inductor by placing several inductors in parallel. Furthermore, by careful placement of these inductors, the mutual inductance between these inductors can be used to increase the equivalent inductance value to a value near that of the original inductance value of a single inductor. Thus, it is possible to create an inductance with a much lower value of parasitic resistance. This invention allows the formation of high Q inductors and would be beneficial in any circuit design requiring inductances. Another aspect of this invention is that the coils can be partitioned to minimize eddy current losses. This invention can easily be implemented in a planar technology. Simulations of several tank circuits indicate that the power dissipation can be reduced 3 to 4 times when compared to conventional techniques.
Owner:INTELLECTUAL VENTURES HOLDING 81 LLC

Inductor element

An inductor element having good characteristics is formed on a substrate. An inductor element 100 includes two spiral conductors 120, 122 formed on the surface of a semiconductor substrate 110. The upper conductor 120 and the lower conductor 122 have substantially the same shape, and the conductor 120 is used as an inductor conductor, while the conductor 122 is used as a floating conductor. The outer and inner ends of the conductor 120 are connected with lead wires 130, 132, respectively, and the lead wire 132 connected with the inner ene extends outside between the lower conductor 122 and the semiconductor substrate 110.
Owner:RICOH KK

Circuit board embedded inductor

A circuit board having an embedded inductor and a process for making the circuit board is provided. In general, the process begins by providing a core structure including a dielectric core layer and a first metal layer on a top surface of the dielectric core layer. The first metal layer is etched to form first inductor windings. A material, such as an epoxy material, including magnetic filler material is deposited over the first inductor windings. Thereafter, a prepreg layer is placed over and attached to the material deposited over the first inductor windings to form the circuit board having the embedded inductor.
Owner:QORVO US INC

Wireless power transmission system

A Wireless power transmission system comprises a base unit (1) with multiple magnetic field generator circuits and a device (10), separable from said base unit (1) having a receiving inductor, adapted to receive power inductively when said device (10) is in proximity to one of said generator circuits, wherein said base unit (1) comprises a controller (3), configured to determine a transmission circuit (2′) from said generator circuits when said receiving inductor is in proximity to said transmission circuit (2′), whereupon said transmission circuit (2′) is operated to generate a first magnetic field (8), having a first phase, to induce a current in said receiving inductor and at least one of the remaining generator circuits is operated as a compensation circuit (2″, 52, 82) to generate a second magnetic field (21), having an opposite phase to said first phase.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Fabrication of inductors in transformer based tank circuitry

Placing inductors or resistors in parallel causes the combined value of inductance or resistance to decrease according to the parallel combination rule. This invention decreases the parasitic resistance of an inductor by placing several inductors in parallel. Furthermore, by careful placement of these inductors, the mutual inductance between these inductors can be used to increase the equivalent inductance value to a value near that of the original inductance value of a single inductor. Thus, it is possible to create an inductance with a much lower value of parasitic resistance. This invention allows the formation of high Q inductors and would be beneficial in any circuit design requiring inductances. Another aspect of this invention is that the coils can be partitioned to minimize eddy current losses. This invention can easily be implemented in a planar technology. Simulations of several tank circuits indicate that the power dissipation can be reduced 3 to 4 times when compared to conventional techniques.
Owner:INTELLECTUAL VENTURES HOLDING 81 LLC

Integrated passive filter incorporating inductors and ESD protectors

A method for implementing an inductor-capacitor filter in an integrated circuit. Embodiments of the invention implement a 5-pole LC low-pass filter suitable for incorporation in wireless applications necessitating compact layouts. Inductors are formed in an IC as concentric coils on metallization layers, the concentric coils providing a negative coupling coefficient between the inductors. The invention provides programmable frequency response characteristics, enabling the transmission of high-frequency base band information while attenuating carrier RF frequencies.
Owner:SEMICON COMPONENTS IND LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products