Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5718 results about "Integrated circuit design" patented technology

Integrated circuit design, or IC design, is a subset of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories

A floating gate memory cell's channel region (104) is at least partially located in a fin-like protrusion (110P) of a semiconductor substrate. The floating gate's top surface may come down along at least two sides of the protrusion to a level below the top (110P-T) of the protrusion. The control gate's bottom surface may also comes down to a level below the top of the protrusion. The floating gate's bottom surface may comes down to a level below the top of the protrusion by at least 50% of the protrusion's height. The dielectric (120) separating the floating gate from the protrusion can be at least as thick at the top of the protrusion as at a level (L2) which is below the top of the protrusion by at least 50% of the protrusion's height. A very narrow fin or other narrow feature in memory and non-memory integrated circuits can be formed by providing a first layer (320) and then forming spacers (330) from a second layer without photolithography on sidewalls of features made from the first layer. The narrow fin or other feature are then formed without further photolithography in areas between the adjacent spacers. More particularly, a third layer (340) is formed in these areas, and the first layer and the spacers are removed selectively to the third layer. The third layer is used as a mask to form the narrow features.
Owner:PROMOS TECH INC

Layout overlap detection with selective flattening in computer implemented integrated circuit design

The present invention relates to a method for efficiently performing hierarchical design rules checks (DRC) and layout versus schematic comparison (LVS) on layout areas of an integrated circuit where cells overlap or where a cell and local geometry overlap. With the present invention, a hierarchical tree describes the integrated circuit's layout data including cells having parent-child relationships and including local geometry. The present invention performs efficient layout verification by performing LVS and DRC checking on the new portions of an integrated circuit design and layout areas containing overlapping cells. When instances of cells overlap, the present invention determines the overlap area using predefined data structures that divide each cell into an array of spatial bins. Each bin of a parent is examined to determine if two or more cell instances reside therein or if a cell instance and local geometry reside therein. Once overlap is detected, the areas of the layout data corresponding to the overlap areas are selectively flattened prior to proceeding to DRC and LVS processing. During selective flattening of the overlap areas, the hierarchical tree is traversed from the top cell down through intermediate nodes to the leaf nodes. Each time geometry data is located during the traversal, it is pushes directly to the top cell without being stored in intermediate locations. This provides an effective mechanism for selective flattening.
Owner:SYNOPSYS INC

Method and system for managing design corrections for optical and process effects based on feature tolerances

A method for modifying instances of a repeating pattern in an integrated circuit design to correct for perturbations during rendering is described. In the typical embodiment, these corrections are optical proximity corrections that correct for optical effects during the projection of the mask pattern onto the wafer and / or processing effects for example photoresist response and etching effects. The method comprises determining a correction for the repeating pattern based on a first set of tolerances for features of the repeating pattern. Then, the suitability of the corrections is evaluated for instances of the repeating pattern in the integrated circuit design based on a second set of tolerances, which is different from the first set of tolerances. This can be used to preserve much of the hierarchy of the layout data in the corrected, or lithography, data. This can be achieved during the OPC process, thus avoiding the post OPC compaction. It can further take advantage of the fact that, for a given physical layer of a chip for example, different portions of the representing design polygons typically have different requirements on pattern fidelity on the wafer while perturbations may vary as a function of field position. By applying knowledge of the feature tolerances, and allowing design corrections only when tolerances are not met, the data explosion that occurs when moving from layout to lithography data can be contained without sacrificing accuracy.
Owner:CADENCE DESIGN SYST INC

Method of forming sensor for detecting gases and biochemical materials, integrated circuit having the sensor, and method of manufacturing the integrated circuit

InactiveUS20080121946A1Characteristics degradation of an integrated circuit caused by heating the unit devices when forming the sensor can be preventedSemiconductor/solid-state device manufacturingNanosensorsMOSFETNano structuring
A method of forming a sensor for detecting gases and biochemical materials that can be fabricated at a temperature in a range from room temperature to 400° C., a metal oxide semiconductor field effect transistor (MOSFET)-based integrated circuit including the sensor, and a method of manufacturing the integrated circuit are provided. The integrated circuit includes a semiconductor substrate. The sensor for detecting gases and biochemical materials includes a pair of electrodes formed on a first region of the semiconductor substrate, and a metal oxide nano structure layer formed on surfaces of the pair electrodes. A heater is formed to perform thermal treatment to re-use the material detected in the metal oxide nano structure layer. Also, a signal processor is formed by a MOSFET to process a predetermined signal obtained from a quantity change of a current flowing through the pair of electrodes of the sensor. To form the sensor, the metal oxide nano structure layer is formed on surfaces of the pair of electrodes at a temperature in a range from room temperature to 400° C.
Owner:ELECTRONICS & TELECOMM RES INST

System, method and computer program product for handling small aggressors in signal integrity analysis

A method, system and computer program product for determining aggressor-induced crosstalk in a victim net of a stage of an integrated circuit design is provided. The methodology can include combining a plurality of aggressor nets to construct a virtual aggressor net, determining a current waveform induced on the victim net by the plurality of small aggressor nets, and modeling a current waveform induced by the virtual aggressor on the victim net based on the contribution of the current waveforms determined for the plurality of small aggressor nets. In a further embodiment, the methodology can also comprise evaluating an effect of an aggressor net on a victim net; and including that aggressor net in the virtual aggressor net if its effect is below a predetermined threshold. The effect evaluated by the methodology can, for example, be the height of a glitch induced on the victim net by a transition in the aggressor net. Additionally, the aggressor net can be included in the virtual aggressor net if the height of the glitch it induces on the victim net is less than a predetermined factor of the supply voltage. Switching probability can be used to compute a 3-sigma capacitance value, and this value can be used to limit the number of small aggressors included in the virtual aggressor net. The combined currents of the aggressor in the virtual aggressor net can be modeled using a piece-wise linear analysis.
Owner:CADENCE DESIGN SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products