Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

51 results about "Layout Versus Schematic" patented technology

The Layout Versus Schematic (LVS) is the class of electronic design automation (EDA) verification software that determines whether a particular integrated circuit layout corresponds to the original schematic or circuit diagram of the design.

Layout overlap detection with selective flattening in computer implemented integrated circuit design

The present invention relates to a method for efficiently performing hierarchical design rules checks (DRC) and layout versus schematic comparison (LVS) on layout areas of an integrated circuit where cells overlap or where a cell and local geometry overlap. With the present invention, a hierarchical tree describes the integrated circuit's layout data including cells having parent-child relationships and including local geometry. The present invention performs efficient layout verification by performing LVS and DRC checking on the new portions of an integrated circuit design and layout areas containing overlapping cells. When instances of cells overlap, the present invention determines the overlap area using predefined data structures that divide each cell into an array of spatial bins. Each bin of a parent is examined to determine if two or more cell instances reside therein or if a cell instance and local geometry reside therein. Once overlap is detected, the areas of the layout data corresponding to the overlap areas are selectively flattened prior to proceeding to DRC and LVS processing. During selective flattening of the overlap areas, the hierarchical tree is traversed from the top cell down through intermediate nodes to the leaf nodes. Each time geometry data is located during the traversal, it is pushes directly to the top cell without being stored in intermediate locations. This provides an effective mechanism for selective flattening.
Owner:SYNOPSYS INC

Connectivity verification of IC (integrated circuit) mask layout database versus IC schematic; LVS check, (LVS: IC layout versus IC schematic) via the internet method and computer software

This paper describes an EDA (Electronic Data Automation) method and computer software invention for connectivity verification of IC mask Layout database versus IC Schematic; LVS Check (LVS: IC Layout versus IC Schematic) over the internet. The technique takes advantage of a unique algorithm to check the mask layout database connectivity, compare it with its corresponding schematic diagram for any mismatches in the mask layout polygons connections. The input of the tool is a mask layout database blocks (i.e.: IC layout) that were made manually and/or automatically using synthesized tools. These blocks may have some connectivity mismatches that need to be fixed in order to match the corresponding integrated circuit (IC) schematic diagrams. The output of the software tool is a text based descriptive log file and errors markers pointers that may be read into the mask layout database in order to point any connectivity mismatches of the mask layout database, comparing it to its corresponding schematic diagram. The end result is a mask layout set of markers and a text format log file that describes any mismatched connections in the mask layout database, comparing it to its corresponded schematic diagram. The software performs on individual mask layout blocks and/or on hierarchical structure of mask layout blocks. The system works hierarchically and/or flat. System also checks mask layout database incrementally, means only blocks that have been changed are checked. The system can be run via the internet using our secured protocol. The system offer a web based control panel to execute all necessary setups for submitting LVS check over the internet. The system offers the option to run on a local machine (user's computer) or on the main server over the internet. (Inventor's computer) The system also offers a PDA (Personal Digital Assistant) interface to launch LVS runs via industry's standard PDA's. The procedure is fully secured by 128 bit security protocol. All necessary file including mask layout GDSII (or GDSIII) file, netlist and technology file are securely encrypted using 128 bit protocol and send to the remote server. These files are decrypted and submitted for LVS check on the remote servers. The main remote server is distributing the task among other computer system for advanced parallel processing to achieve fast results. All results log files are encrypted using 128 bit security protocol and available for download by the user. In case of local LVS check the results files are available on the user's local machine.
Owner:RITTMAN DAN

Methods, apparatus and computer program products that perform layout versus schematic comparison of integrated circuits using advanced pin coloring operations

A layout versus schematic (LVS) comparison tool determines one-to-one equivalency between an integrated circuit schematic and an integrated circuit layout by performing operations to color a schematic graph of a parent cell to an equilibrium state. An operation is then performed to recolor nets connected to first and second child cells having the same device value within the parent cell, using a net coloring operation that recolors a first plurality of symmetric pins of the first child cell and recolors a second plurality of symmetric pins of the second child cell. Distinct device values are then generated for the first and second child cells by determining a first product of the colors of the recolored first plurality of symmetric pins and a second product of the colors of the recolored second plurality of symmetric pins. The operations to recolor the nets preferably include coloring a first pin of a child cell within a parent cell using a pin coloring operation that is a function of a device value of the child cell and a color of each of the pins of the child cell that are independently swappable with the first pin, but is independent of a color of a second pin of the child cell that is dependently swappable with the first pin.
Owner:SYNOPSYS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products