Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

269 results about "Inductor windings" patented technology

Integrated magnetics for a DC-DC converter with flexible output inductor

An integrated magnetic assembly that allows the primary and secondary windings of a transformer and a separate inductor winding to be integrated on a unitary magnetic structure is disclosed. The unitary magnetic structure includes first, second, and third legs that are physically connected and magnetically coupled. The primary and secondary windings of the transformer can be formed on the third leg of the unitary magnetic structure. Alternatively, the primary and secondary windings can be split between the first and second legs. Thus, the primary winding includes first and second primary windings disposed on the first and second legs and the secondary winding includes first and second secondary windings disposed on the first and second legs. The inductor winding may also be formed either on the third leg or it may split into first and second inductor windings and disposed on the first and second legs. In addition, one or more legs may include an energy storage component such as an air gap. This integration of the primary and secondary windings and the inductor winding on the unitary magnetic structure advantageously decouples the inductor function from the transformer function and allows the more optimal design of both the inductor and the transformer. The unitary magnetic structure may be coupled to a full bridge, a half bridge, or a push pull voltage input source to form a DC—DC converter.
Owner:NORTHEASTERN UNIV

High ac current high RF power ac-RF decoupling filter for plasma reactor heated electrostatic chuck

An RF blocking filter isolates a two-phase AC power supply from at least 2 kV p-p of power of an HF frequency that is reactively coupled to a resistive heating element, while conducting several kW of 60 Hz AC power from the two-phase AC power supply to the resistive heating element without overheating, the two-phase AC power supply having a pair of terminals and the resistive heating element having a pair of terminals. The filter includes a pair of cylindrical non-conductive envelopes each having an interior diameter between about one and two inches and respective pluralities of fused iron powder toroids of magnetic permeability on the order of about 10 stacked coaxially within respective ones of the pair of cylindrical envelopes, the exterior diameter of the toroids being about the same as the interior diameter of each of the envelopes. A pair of wire conductors of diameter between 3 mm and 3.5 mm are helically wound around corresponding ones of the pair of envelopes to form respective inductor windings in the range of about 16 to 24 turns for each the envelope, each of the conductors having an input end and an output end. The input end of each one of the conductors is coupled to a corresponding one of the pair of terminals of the two-phase AC power supply, and the output end of each one of the conductors is coupled to a corresponding one of the pair of terminals of the resistive heating element.
Owner:APPLIED MATERIALS INC

A wireless powering device, an energizable load, a wireless system and a method for a wireless energy transfer

A wireless resonant powering device (1) according to the invention comprises a first inductor winding (3), which is arranged to form a transformer (9) with the inductor winding (13) of the energizable load (11). The first inductor winding (3) is arranged to form a resonant circuit (5), which may comprise a suitable plurality of electric capacitances and coils. The components of the resonant circuit (5) are selected such that the magnetic energy received by the inductor winding (13) damps the energy flow in the resonant circuit so that the induced voltage in the inductor winding (13) is substantially constant and is independent of the magnetic coupling between the first inductor winding (3) and the inductor winding 13 at the operating frequency of the driving means (6). The resonant circuit is driven by the driving means (6), comprising a control unit (6c) arranged to induce an alternating voltage between a first semiconductor switch (6a) and a second semiconductor switch (6b). At the output of the transformer (9) an alternating voltage is generated, which is rectified to a DC-voltage by a diode rectifier, filtered by an output capacitance. The resonant circuit (5) is operable on its coupling independent point by the driving means (6). This figure schematically illustrates a situation, where a variable coupling between the first inductor winding (3) and the inductor winding (13) exists. The invention further relates to a wireless inductive powering device, an energizable load, a wireless system and a method for wireless power transfer.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Multi-layer printed circuit board inductor winding with added metal foil layers

The present invention provides an electromagnetic component formed from adjacent conducting layers of a multi-layer PCB and two additional conducting layers in contact with the PCB. The inventive component includes one or more winding turns formed by connecting the multiple layers of the multi-layer PCB with conductive vias and by connecting the additional conducting layers to respective top and bottom surfaces of the PCB. In one embodiment, one of the conducting layers is soldered to a top conducting layer of the PCB and the other of the conductive layers is soldered to a bottom conducting layer of the PCB, effectively increasing the cross-sectional area of the top and bottom winding layers. In another embodiment, the additional conducting layers are separated from the adjacent conducting PCB layers by a layer of insulation, permitting the additional conducting layers to form separate winding turns. The inventive winding stack can be surface mounted to a PCB, and can be used as an inductor, or in other electromagnetic devices. The winding thus constructed is capable of accepting larger currents with lower resulting temperature increases than windings formed only from PCBs, and are less expensive to manufacture than PCB-only windings.
Owner:ASTEC INT LTD

Integrated magnetcs transformer assembly

The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output inductor winding comprising series coupled first and second half-windings wherein the first half-winding is wound around a second predetermined segment of the first magnetically permeable core and the second half-winding is wound around a second predetermined segment of the second magnetically permeable core. A second output inductor comprises series coupled first and second half-windings wherein the first half-winding is wound around a third predetermined segment of the first magnetically permeable core and the second half-winding is wound around a third predetermined segment of the second magnetically permeable core. The second half-winding of the first output inductor winding and the second half-winding of the second output inductor winding are configured to produce oppositely directed magnetic fluxes through the second substantially closed magnetic flux path and the first half-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well-suited for use in a broad range of single input or multiple-input isolated power converter topologies.
Owner:DANMARKS TEKNISKE UNIV

Apparatus and method for wafer level fabrication of high value inductors on semiconductor integrated circuits

An apparatus and method for wafer level fabrication of high value inductors directly on top of semiconductor integrated circuits is disclosed. The integrated circuit includes a plurality of regulator circuits, each of the regulator circuits having an input node configured to receive a plurality of pulsed input signals having a predetermined duty cycle and a plurality of inductor windings associated with each of the plurality of regulator circuits respectively. The integrated circuit also includes a core array having a plurality of core elements. The plurality of core elements are positioned adjacent to and magnetically coupled with one or more of the plurality of inductor windings. An output node is electrically coupled to the plurality of inductor windings. The output signal at the output node is the sum of the instantaneous voltage on each of the inductor windings associated with the plurality of regulator circuits respectively. The integrated circuit also includes a phase control circuit coupled to the plurality of regulator circuits. The phase control circuit controls the phase of the plurality of pulsed input signals received at the plurality of the regulator circuits to control the output signal at the output node.
Owner:NAT SEMICON CORP

High AC current high RF power AC-RF decoupling filter for plasma reactor heated electrostatic chuck

An RF blocking filter isolates a two-phase AC power supply from at least 2 kV p-p of power of an HF frequency that is reactively coupled to a resistive heating element, while conducting several kW of 60 Hz AC power from the two-phase AC power supply to the resistive heating element without overheating, the two-phase AC power supply having a pair of terminals and the resistive heating element having a pair of terminals. The filter includes a pair of cylindrical non-conductive envelopes each having an interior diameter between about one and two inches and respective pluralities of fused iron powder toroids of magnetic permeability on the order of about 10 stacked coaxially within respective ones of the pair of cylindrical envelopes, the exterior diameter of the toroids being about the same as the interior diameter of each of the envelopes. A pair of wire conductors of diameter between 3 mm and 3.5 mm are helically wound around corresponding ones of the pair of envelopes to form respective inductor windings in the range of about 16 to 24 turns for each the envelope, each of the conductors having an input end and an output end. The input end of each one of the conductors is coupled to a corresponding one of the pair of terminals of the two-phase AC power supply, and the output end of each one of the conductors is coupled to a corresponding one of the pair of terminals of the resistive heating element.
Owner:APPLIED MATERIALS INC

Multi-layer printed circuit board inductor winding with added metal foil layers

The present invention provides an electromagnetic component formed from adjacent conducting layers of a multi-layer PCB and two additional conducting layers in contact with the PCB. The inventive component includes one or more winding turns formed by connecting the multiple layers of the multi-layer PCB with conductive vias and by connecting the additional conducting layers to respective top and bottom surfaces of the PCB. In one embodiment, one of the conducting layers is soldered to a top conducting layer of the PCB and the other of the conductive layers is soldered to a bottom conducting layer of the PCB, effectively increasing the cross-sectional area of the top and bottom winding layers. In another embodiment, the additional conducting layers are separated from the adjacent conducting PCB layers by a layer of insulation, permitting the additional conducting layers to form separate winding turns. The inventive winding stack can be surface mounted to a PCB, and can be used as an inductor, or in other electromagnetic devices. The winding thus constructed is capable of accepting larger currents with lower resulting temperature increases than windings formed only from PCBs, and are less expensive to manufacture than PCB-only windings.
Owner:ASTEC INT LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products