Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3723 results about "Phase control" patented technology

Multiphase power regulator with load adaptive phase control

Disclosed is a power regulator for providing precisely regulated power to a microelectronic device such as a microprocessor. Improved power regulation is accomplished by optimizing the power efficiency of the power regulator. In particular, in a multiphase system, the number of active phases is increased or decreased to achieve optimum power efficiency. The multiphase voltage regulator adapts the operating mode to maximize efficiency as the load current demand of the load device changes by adjusting the number of active phases to maximize efficiency. The total value of current provided by the regulator and the total number of active phases is determined, the total number of active phases is compared with the number of active phases required to provide the total value of current at maximum efficiency; and the number of active phases is adjusted to provide the total value of current at maximum efficiency. A current sense circuit senses the current at each phase, a summing circuit coupled to the output of the current sense circuit provides the total current value of all the measured phases, a circuit coupled to the output of the summing circuit provides the time averaged total current value to a threshold detecting circuit that determines the number of phases at which the voltage regulator should be operating for maximum efficiency, and a circuit for comparing the number of phases that are operating to the number of phases at which the voltage regulator should be operating adjusts the number of active phases to the number of phases at which the voltage regulator should be operating for maximum efficiency.
Owner:INFINEON TECH AUSTRIA AG

Reconfigurable parasitic control for antenna arrays and subarrays

InactiveUS20050088358A1Reduce decreaseScan angles can be increasedLogperiodic antennasAntenna arraysEngineeringArray element
Reconfiguration of parasitically controlled elements in a phased array is used to expand the range of operational functions. Embedded array elements can be frequency tuned, and bandwidth can be improved by using reconfiguration to broaden the bandwidth of the embedded elements. For high gain arrays, beam squint can be a limiting factor on instantaneous bandwidth. Reconfiguration can alleviate this problem by providing control of the element phase centers. Scan coverage can be improved and scan blindness alleviated by controlling the embedded antenna patterns of the elements as well as by providing control of the active impedance as the beam is scanned. Applying limited phase control to the elements themselves can alleviate some of the complexity of the feed manifold. A presently preferred method of designing reconfigurable antennas is to selectively place controlled parasitic elements in the aperture of each of the antenna elements in the phased array. The parasitic elements can be controlled to change the operational characteristics of the antenna element. The parasitic elements are controlled by either switching load values in and out that are connected to the parasitic elements or are controlled by applying control voltages to variable reactance circuits containing devices such as varactors. The parasitic elements can be controlled by the use of a feedback control subsystem that is part of the antenna system which adjusts the RF properties of the parasitic components based on some observed metric. The controllable characteristics include directivity control, tuning, instantaneous bandwidth, and RCS.
Owner:TOYON RES CORP

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products