Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3417 results about "Load circuit" patented technology

Load Circuit. Any electrical device for usefully converting or consuming electrical energy other than those devices which are merely accessory, auxiliary, or appurtenant to the source and/or the circuit which supplies electric energy.

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Battery charger for lithium based batteries

A method for charging a battery, such as a lithium based battery, which applies different charge pulses and discharge pulses to the battery, takes voltage measurements during those charge pulses, discharge pulses, and rest periods between the charge pulses and discharge pulses, and determines whether to terminate or to continue charging the battery. The full sequence of charge pulses, discharge pulses, and rest periods, includes a plurality of charge pulses (1), separated by rest periods (2) and followed by a rest period (3). This is then followed by a plurality of discharge pulses (4), separated by rest periods (5) and followed by a rest period (6). This is then followed by a plurality of extended charge pulses (7), separated by rest periods (8) and followed by a rest period (9). Then another discharge pulse (10) is applied, followed by a rest period (11). This is followed by a plurality of alternating charge pulses (13) and discharge pulses (12), separated by rest periods (13, 15) and followed by a rest period (16). Then another plurality of discharge pulses (17) is applied, separated by rest periods (18) and followed by a rest period (19). Open circuit voltage measurements taken during the rest periods, loaded circuit voltage measurements taken during the discharge pulses, and charge pulse voltage measurements taken during the charge pulses, are used to determine whether to continue or to terminate the charging of the battery.
Owner:ENREV

Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7177691B2System operation is safe and reliableFirmly connectedElectrotherapyLoad circuitSpinal cord stimulation
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithiumion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7295878B1Assures safe and reliable operation of systemFirmly connectedImplantable neurostimulatorsLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Electric field coupling-based wireless power transmission system

The invention discloses an electric field coupling-based wireless power transmission system. The system comprises a power supply circuit, a high-frequency inverter circuit, a tuning circuit, an electric field coupling polar plate, a rectifier filter circuit and a load circuit and is characterized by also comprising a coupling capacitance detection module, a controller and a fixed frequency drive circuit; a capacitance compensation array is arranged in the tuning circuit; the controller detects parameters of the electric field coupling polar plate and controls compensation values of the capacitance compensation array through the coupling capacitance detection module, and outputs fixed frequency control signals; and the fixed frequency signals are transmitted to the fixed frequency drive circuit, and then the high-frequency inverter circuit is driven to work. The electric field coupling-based wireless power transmission system has the advantages that based on the electric field coupling, the transmission capacity and efficiency of the system are improved by adopting an E amplifier; and by arranging the coupling capacitance detection module, the electric field coupling polar plate of the system is detected in real time, and the capacitance compensation value can be effectively controlled, so that the system is kept in the soft switching state, and the power transmission stability and reliability of the system are improved.
Owner:重庆华创智能科技研究院有限公司

Serial arc-fault circuit interrupter and serial arc-fault protection method thereof

The invention discloses a serial arc-fault circuit interrupter, comprising a power circuit, a current sensor, a current sensing circuit, an amplifying and filtering circuit, a voltage zero-crossing comparison circuit, a microcontroller, a trip trigger circuit. A current transformer collects current signals in a circuit; the current signals are converted into voltage signals through the current sensing circuit, and are input into the microcontroller through the amplifying and filtering circuit; the voltage zero-crossing comparison circuit inputs a voltage zero-crossing pulse signal into the microcontroller; the microcontroller judges arc emergence through arc characteristics analysis and is disconnected with a load circuit by the trip trigger circuit. The protection method transforms a one-dimensional time signal into a two-dimensional time signal by utilizing short-time Fourier transform, analyzes changes of fundamental component, even-order harmonic and odd harmonic component of eachcyclic wave, extracts and judges the serial arc-fault characteristics. The method has the advantages that multiple characteristics are extracted to realize comprehensive judgment of fault arc, missedtrip and balk generated in serial arc detection in small load are prevented, and the reliability of judgment is improved effectively.
Owner:天津托普帕尔电气自动化设备有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products