Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

34 results about "Nominal level" patented technology

Nominal level is the operating level at which an electronic signal processing device is designed to operate. The electronic circuits that make up such equipment are limited in the maximum signal they can handle and the low-level internally generated electronic noise they add to the signal. The difference between the internal noise and the maximum level is the device's dynamic range. The nominal level is the level that these devices were designed to operate at, for best dynamic range and adequate headroom. When a signal is chained with improper gain staging through many devices, the dynamic range of the signal is reduced.

Startup circuit for subregulated amplifier

A multi-stage circuit has a first stage powered by the output voltage of a next stage. A current source within the first stage provides a tail current for a differential amplifier within the first stage. When the first stage has an operating voltage high enough for proper operation, this tail current is at a nominal level; if the voltage is too low for proper operation of the first stage, the tail current is below this nominal level. A comparator, which has one input coupled to a node within this current source, a second input coupled to a threshold voltage, and an output coupled to a control node within the next stage, provides an output indicative of whether or not the tail current is substantially at its nominal level. If tail current is too low, the comparator provides a forcing signal to the control node of the next stage which causes the output of the next stage to be at a substantially nominal level regardless of the voltage at its input, thus providing a suitably high voltage for the first stage to begin normal operation. When the tail current reaches its nominal level, the comparator output changes state to one which has little or no effect on the output voltage of the second stage, and normal operation of the overall circuit begins.
Owner:TEXAS INSTR INC

Front end automatic gain control circuit using a control word generator

A control word generator comprised of circuitry to generate a control word to control an attenuator. The control word generator includes a counter that increments at a clock rate much higher than the refresh rate at which the error signal is recalculated. The counter is controlled by a comparator which compares the error signal to a reference value, which, starting from a programmable upper limited is decremented in the counter's incrementation rate by a programmable step size. When the reference value equals the error signal, the comparator changes state and the counter stops incrementing. The count at that time is the control word, which if everything operated instantaneously, would be the control word that would alter the attenuation sufficiently to achieve nominal power. Also disclosed is a method to use this apparatus to generate a table of control words comprising: first establish an input power level and attenuate the signal with an analog variable attenuator / amplifier; second, measuring the output power of the signal output by said variable attenuator / amplifier; third, use a control word generator to iteratively derive a control word, which will cause the input signal power to be altered to the nominal power level; fourth, record that control word; fifth, increment the input signal power and repeat the process to derive a new control word and record that word; and, sixth, repeat the entire process for each level of expected input signal power.
Owner:ARRIS ENTERPRISES LLC

Startup circuit for subregulated amplifier

A multi-stage circuit has a first stage powered by the output voltage of a next stage. A current source within the first stage provides a tail current for a differential amplifier within the first stage. When the first stage has an operating voltage high enough for proper operation, this tail current is at a nominal level; if the voltage is too low for proper operation of the first stage, the tail current is below this nominal level. A comparator, which has one input coupled to a node within this current source, a second input coupled to a threshold voltage, and an output coupled to a control node within the next stage, provides an output indicative of whether or not the tail current is substantially at its nominal level. If tail current is too low, the comparator provides a forcing signal to the control node of the next stage which causes the output of the next stage to be at a substantially nominal level regardless of the voltage at its input, thus providing a suitably high voltage for the first stage to begin normal operation. When the tail current reaches its nominal level, the comparator output changes state to one which has little or no effect on the output voltage of the second stage, and normal operation of the overall circuit begins.
Owner:TEXAS INSTR INC

A design method based on a controller for regulating gas balance in an artificial closed ecosystem

The invention relates to a controller for automatically regulating and controlling gas steady balance in an artificial closed ecological system, and mainly aims at problems of important process control in the space controlled ecological life support system in our country. Based on experiment data and system identification, positive system and reverse system models of a microalgae light bioreactor and aerobic microbial fermentation reactor are established. According to gas amount practically needed to be compensated, a response curve of oxygen or carbon dioxide production speed is established. Simulation models of the reverse system model and a gas production speed response curve algorithm are established on a MatLab / Simulink platform. A simulation model rapid prototype is designed into a practical controller by utilizing MatLab / Real-timeWorkshop. In the emergency state, the response curve of the oxygen and carbon dioxide production speed is confirmed via online monitoring of gas concentration in the system. The real-time control law of the light algae reactor and the fermentation reactor is obtained by utilizing the reverse system model so that gas concentration in the system is steadily balanced at the nominal level, and thus objectives of enhancing safety and reliability of the artificial closed ecological system are realized.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products