Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1139 results about "External cavity" patented technology

Devices and methods for tissue access

Methods and apparatus are provided for selective surgical removal of tissue, e.g., for enlargement of diseased spinal structures, such as impinged lateral recesses and pathologically narrowed neural foramen. In one variation, tissue may be ablated, resected, removed, or otherwise remodeled by standard small endoscopic tools delivered into the epidural space through an epidural needle. Once the sharp tip of the needle is in the epidural space, it is converted to a blunt tipped instrument for further safe advancement. A specially designed epidural catheter that is used to cover the previously sharp needle tip may also contain a fiberoptic cable. Further embodiments of the current invention include a double barreled epidural needle or other means for placement of a working channel for the placement of tools within the epidural space, beside the epidural instrument. The current invention includes specific tools that enable safe tissue modification in the epidural space, including a barrier that separates the area where tissue modification will take place from adjacent vulnerable neural and vascular structures. In one variation, a tissue abrasion device is provided including a thin belt or ribbon with an abrasive cutting surface. The device may be placed through the neural foramina of the spine and around the anterior border of a facet joint. Once properly positioned, a medical practitioner may enlarge the lateral recess and neural foramina via frictional abrasion, i.e., by sliding the abrasive surface of the ribbon across impinging tissues. A nerve stimulator optionally may be provided to reduce a risk of inadvertent neural abrasion. Additionally, safe epidural placement of the working barrier and epidural tissue modification tools may be further improved with the use of electrical nerve stimulation capabilities within the invention that, when combined with neural stimulation monitors, provide neural localization capabilities to the surgeon. The device optionally may be placed within a protective sheath that exposes the abrasive surface of the ribbon only in the area where tissue removal is desired. Furthermore, an endoscope may be incorporated into the device in order to monitor safe tissue removal. Finally, tissue remodeling within the epidural space may be ensured through the placement of compression dressings against remodeled tissue surfaces, or through the placement of tissue retention straps, belts or cables that are wrapped around and pull under tension aspects of the impinging soft tissue and bone in the posterior spinal canal.
Owner:SPINAL ELEMENTS INC +1

Devices and methods for tissue access

InactiveUS20060122458A1Enabling symptomatic reliefApproach can be quite invasiveCannulasDiagnosticsSurgical departmentNerve stimulation
Methods and apparatus are provided for selective surgical removal of tissue, e.g., for enlargement of diseased spinal structures, such as impinged lateral recesses and pathologically narrowed neural foramen. In one variation, tissue may be ablated, resected, removed, or otherwise remodeled by standard small endoscopic tools delivered into the epidural space through an epidural needle. Once the sharp tip of the needle is in the epidural space, it is converted to a blunt tipped instrument for further safe advancement. A specially designed epidural catheter that is used to cover the previously sharp needle tip may also contain a fiberoptic cable. Further embodiments of the current invention include a double barreled epidural needle or other means for placement of a working channel for the placement of tools within the epidural space, beside the epidural instrument. The current invention includes specific tools that enable safe tissue modification in the epidural space, including a barrier that separates the area where tissue modification will take place from adjacent vulnerable neural and vascular structures. In one variation, a tissue removal device is provided including a thin belt or ribbon with an abrasive cutting surface. The device may be placed through the neural foramina of the spine and around the anterior border of a facet joint. Once properly positioned, a medical practitioner may enlarge the lateral recess and neural foramina via frictional abrasion, i.e., by sliding the tissue removal surface of the ribbon across impinging tissues. A nerve stimulator optionally may be provided to reduce a risk of inadvertent neural abrasion. Additionally, safe epidural placement of the working barrier and epidural tissue modification tools may be further improved with the use of electrical nerve stimulation capabilities within the invention that, when combined with neural stimulation monitors, provide neural localization capabilities to the surgeon. The device optionally may be placed within a protective sheath that exposes the abrasive surface of the ribbon only in the area where tissue removal is desired. Furthermore, an endoscope may be incorporated into the device in order to monitor safe tissue removal. Finally, tissue remodeling within the epidural space may be ensured through the placement of compression dressings against remodeled tissue surfaces, or through the placement of tissue retention straps, belts or cables that are wrapped around and pull under tension aspects of the impinging soft tissue and bone in the posterior spinal canal.
Owner:BAXANO

ILS sensors for drug detection within vehicles

InactiveUS6067167AExtend drug detectionColor/spectral properties measurementsOn boardSpectroscopy
On-board ILS sensors for detecting illegal drugs and based on intracavity laser spectroscopy (ILS) are provided for detecting the presence of drugs and their metabolized by-product vapors in an enclosed space, such as a vehicle. The sensor comprises: (a) a laser comprising a gain medium having two opposed facets within a laser resonator and functioning as an intracavity spectroscopic device having a first end and a second end, the first end operatively associated with a partially reflecting (i.e., partially transmitting) surface; (b) a reflective or dispersive optical element (e.g., a mirror or a diffraction grating) operatively associated with the second end to define a broadband wavelength laser resonator between the optical element and the first end and to thereby define an external cavity region between at least one facet of the gain medium and either the first end or the second end or both ends; (c) the external cavity region being exposed to air in the enclosed space to enable any drugs or their metabolized by-product molecules to enter thereinto; (d) a detector spaced from the first end; (e) appropriate electronics for measuring and analyzing the detector signal; (f) a housing for containing at least the laser, the partially reflecting surface, and the optical element, the housing being configured to prevent escape of stray radiation into the enclosed space and to permit air from the enclosed space to continuously circulate through the external cavity region for analysis; and (g) means for driving the laser (e.g., electrical or optical). A method is provided for measuring concentration of drug vapors and their metabolized by-product vapors in the vehicle or other enclosed space employing the on-board sensor. The method comprises: (1) sensing any drugs and their metabolized by-product vapors in the enclosed space by the on-board sensor; and (2) providing a signal indicative of presence of any drugs or metabolized vapors.
Owner:INNOVATIVE LASERS

External cavity tunable compact mid-IR laser

A compact mid-IR laser device utilizes an external cavity to tune the laser. The external cavity may employ a Littrow or Littman cavity arrangement. In the Littrow cavity arrangement, a filter, such as a grating, is rotated to provide wavelength gain medium selectivity. In the Littman cavity arrangement, a reflector is rotated to provide tuning. A quantum cascade laser gain medium provides mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens for both the output lens and the external cavity lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser gain medium is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another. The small diameter aspheric output and external cavity lens each may have a diameter of 10 mm or less and each lens is positioned to provided a collimated beam output from the quantum cascade laser gain medium. The housing is hermetically sealed to provide a rugged, light weight portable MIR laser source.
Owner:DAYLIGHT SOLUTIONS

Device for anchoring tubular element

The present invention is directed to an apparatus for anchoring a tubular element, preferably in the form of a catheter, within a passageway formed in a mammalian body, such as in a vessel, artery, duct, channel, or the like. The apparatus comprises a tubular element having a flexible, elongated, hollow tubular outer lumen with a central longitudinal axis extending therethrough, the outer lumen having a proximal end and a distal end. The apparatus further comprises deployment means positioned within the outer lumen and slidable with respect to the outer lumen. The deployment means has a proximal end and a distal end. The apparatus further comprises a plurality of resilient anchoring members preferably formed of a pseudoelastic material. The anchoring members are coupled to the distal end of the deployment means and extend longitudinally beyond the distal end of the deployment means. Each anchoring member is reversibly movable by the deployment means between a first position and a second position. In the first position, at least a portion of each anchoring member is retracted within the outer lumen of the tubular element. In the second position, at least a portion of each of the anchoring members is deployed exteriorly to the outer lumen of the tubular element, so as to engage an inner wall of the mammalian passageway and anchor the tubular element in a selected position within the passageway.
Owner:MEDTRONIC INC

Potency package

A device and method for male impotence correction and female anorgasmy. An electronic stimulator with at least one pulse generator is implanted inside the body. At least one electrode is installed in the epidural space in the sacrum section of the spinal column and a conductor running under the user's skin electrically connects the electrode to the pulse generator. The stimulator is programmable and may be controlled from outside the body. Upon command initiated by the user or the user's lover the stimulator produces very short low-voltage electrical pulses in the sacrum section that are picked up by the nerves leading to the sex organs of the user, which stimulates arousal in the user's reproductive systems. The pulses are similar to the pulses generated by heart pacemakers. In other preferred embodiments the stimulator includes one or two drug chambers and a tube extending from each chamber to a nerve for producing stimulation of a sex organ. The present invention works on both males and females. In a preferred embodiment, the programmable electronic stimulator is implanted under the skin in the patient's back. Stimulation of the nerves coming out from the parasympathetic part of the spinal cord causes dilatation of the penile arteries in the male and in the clitoris arteries of the female, which results in an erection in the male and pre-orgasmic sensation in the female. In female, the stimulation of the sacral part of the spinal cord increases sexual desire and escalation to the level of orgasm. A preferred embodiment provides for emission stimulation. Emission is stimulated by electrical excitation of the sacral part of the spinal cord by increasing the voltage of the previous impulses. The device may be preprogrammed to set in motion the emission and ejaculation process at a predetermined time interval after the start of the erection process.
Owner:KRAKOUSKY ALEXANDER A

Electrohydraulic energy-regenerative type shock absorber

The invention relates to an electrohydraulic energy-regenerative type shock absorber, which comprises a hydraulic circuit, a working chamber and a piston, wherein the working chamber is divided into a piston working cavity and an accumulating power-generating cavity by a partition plate (13), and the piston is positioned in the piston working cavity and is connected with an external upper mounting base (7) through a piston push rod (8); a hydraulic motor (4) is positioned in the energy storage power-generating cavity and is connected with an external rotary generator (5) through a driving shaft, and an accumulator (3) is positioned in the accumulating power-generating cavity and is positioned below the partition plate (13); and the hydraulic circuit and a plurality of one-way valves (6) form a hydraulic rectifier bridge, and the hydraulic circuit adopts the method that an external pipeline is arranged outside the piston or the piston is designed to form internal and external cavities. The invention has simple structure, fewer components and small volume, can allow the energy generated by vehicle vibration to be fully used for doing work, can effectively recover vibration energy, has better shock absorbing effect than the existing shock absorber, and also prolongs the service life of the generator.
Owner:武汉经开科创运营有限公司

Wavelength tunable laser

A wavelength tunable laser comprising a laser diode and a closed external cavity formed by one or more optical resonators either horizontally or vertically coupled to adjacent waveguides. The optical resonator primarily functions as a wavelength selector and may be in the form of disk, ring or other closed cavity geometries. The emission from one end of the laser diode is coupled into the first waveguide using optical lens or butt-joint method and transferred to the second waveguide through evanescent coupling between the waveguides and optical resonator. A mirror system or high reflection coating at the end of the second waveguide reflects the light backwards into the system resulting in a closed optical cavity. Lasing can be achieved when the optical gain overcomes the optical loss in this closed cavity for a certain resonance wavelength which is tunable by changing the resonance condition of the optical resonator through reversed biased voltage or current injection. Multiple optical resonators may be used to reduce the lasing threshold and provide higher power output. With monolithic integration, more optical devices can be integrated with the tunable laser into the same substrate to produce optical devices that are capable of more complex functions, such as tunable transmitters or waveguide buses.
Owner:MIND FUSION LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products