Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3888results about "Liquid based dampers" patented technology

Self-driving vehicle with integrated active suspension

A self-driving vehicle with an integrated fully-active suspension system. The fully-active suspension utilizes data from one or more sensors used for autonomous driving (e.g. vision, LIDAR, GPS) in order to anticipate road conditions in advance. The system builds a topographical map of the road surface. Suspension and road data is delivered back to the vehicle in order to change autonomous driving behavior including route planning. Energy storage is regulated based on a planned route. Forward and lateral acceleration feel is mitigated through active pitch and tilt compensation. The fully-active suspension pushes and pulls the suspension in three or more operational quadrants in order to deliver superior ride comfort, handling, and / safety of the vehicle.
Owner:CLEARMOTION INC

Regenerative shock absorber system

A regenerative shock absorber that include a housing and a piston that moves at least partially through the housing when the shock is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor, in turn, drives an electric generator that produced electric energy. The electric energy may be provided to a vehicle, among other things. The regenerative shock absorber may also provide ride performance that comparable to or exceeds that of conventional shock absorbers.
Owner:CLEARMOTION INC

Integrated suspension system for vehicle

An integrated suspension system includes a cylinder that hermetically contains gas therein and is fixed to a vehicle body; a piston that has a motor at an upper portion thereof, is configured to support a road wheel and is guided within the cylinder to move vertically; a disk unit including a second disk that has a plurality of passage holes formed there through and a bottom surface coupled to a driving shaft of the motor to rotate while moving vertically integrally along with the piston, and a first disk that has a plurality of passage holes and is stacked on and connected via a hinge to the center of a top surface of the second disk to move vertically within the cylinder integrally along with the second disk without any rotation; and a control unit that controls an opening degree established through overlap of the passage holes formed in the first and second disks by changing power supplied to the motor to control a rotational angle of the second disk.
Owner:HYUNDAI MOBIS CO LTD

Methods and apparatus for combined variable damping and variable spring rate suspension

Pressure-sensitive vales are incorporated within a dampening system to permit user-adjustable tuning of a shock absorber. In one embodiment, a pressure-sensitive valve includes an isolated gas chamber having a pressure therein that is settable by a user.
Owner:FOX FACTORY

Self-driving vehicle with integrated active suspension

A self-driving vehicle with an integrated fully-active suspension system. The fully-active suspension utilizes data from one or more sensors used for autonomous driving (e.g. vision, LIDAR, GPS) in order to anticipate road conditions in advance. The system builds a topographical map of the road surface. Suspension and road data is delivered back to the vehicle in order to change autonomous driving behavior including route planning. Energy storage is regulated based on a planned route. Forward and lateral acceleration feel is mitigated through active pitch and tilt compensation. The fully-active suspension pushes and pulls the suspension in three or more operational quadrants in order to deliver superior ride comfort, handling, and / safety of the vehicle.
Owner:CLEARMOTION INC

Methods and apparatus for suspension lock out and signal generation

Methods and apparatus for regulating the function of a suspension system are disclosed herein. Suspension characteristics often contribute to the efficiency of a suspended system. Depending on the desired operating parameters of the suspended system, it may be desirable to alter the functional characteristics of the suspension from time to time in order to maintain or increase efficiency. The suspension hereof may be selectively locked into a substantially rigid configuration, and the damping fluid may be phase separated and / or cooled to increase damping rate during use (or offset rate degradation). The suspension hereof may generate power usable to achieve any or all of the foregoing or to be stored for use elsewhere in the suspended system or beyond.
Owner:FOX FACTORY

Dampers for mountain bikes

An apparatus of a damper (46) for a bicycle comprising a housing defining a chamber, and a piston, movable in the chamber along a first direction. The apparatus further comprises a controllable means to vary the resistance to movement of the piston in the chamber, a sensor (62), and a controller (58) including a timer. Said sensor measures at least one dynamic quantity and produces an output signal based thereon. Said output signal is received by the controller, and said controller controls said controllable means based on said dynamic quantity as a function of time to control the level of damping. The invention further provides means for manually adjusting the level of rebound damping.
Owner:UNIV OF SHEFFIELD

Front fork

A front fork, which is interposed between a vehicle body and an axle to restrain a change in vehicle attitude, comprises a fork body (101) including a reservoir chamber (106) partially filled with gas and performing an expansion and contraction operation, a reservoir tank (102) partially filled with gas and communicating with the reservoir chamber (106) through a flow path (103) in which hydraulic oil flows, an on-off valve (35) switching between opening and closing of the flow path (103), and a relief valve (40) accepting flow of hydraulic oil from the reservoir chamber (106) toward the reservoir tank (102) when a pressure of the reservoir chamber (106) reaches a predetermined pressure.
Owner:KYB CORP

Fluid flow regulation of a vehicle shock absorber/damper

Shock absorber components, such as a radial bypass damper, an anti-cavitation valve (ACV) and an incremental flow metering valve IFMV. The damper is of a continuous, unitary construction with a main hole and auxiliary holes interconnected by passageways. The ACV has openings that angle obliquely relative to entry surfaces of valving shims and extend at an incline continuously through the valving shims. The metering valve linearly regulates flow, substantially independent of piston displacement.
Owner:THYSSENKRUPP BILSTEIN OF AMERICA

Fluid flow regulation of a vehicle shock absorber/damper

Shock absorber components, such as a radial bypass damper, an anti-cavitation valve (ACV) and an incremental flow metering valve IFMV. The damper is of a continuous, unitary construction with a main hole and auxiliary holes interconnected by passageways. The ACV has openings that angle obliquely relative to entry surfaces of valving shims and extend at an incline continuously through the valving shims. The metering valve linearly regulates flow, substantially independent of piston displacement.
Owner:THYSSENKRUPP BILSTEIN OF AMERICA

System and method for damping vibration in a drill string

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
Owner:APS TECH

Controllable damping force hydraulic shock absorber

A controllable damping force hydraulic shock absorber including a pilot type damping valve having a back-pressure chamber for each of an extension stroke and a compression stroke. A piston connected to a piston rod is fitted into a sealed cylinder in which a hydraulic fluid is contained. During an extension stroke of the piston rod, the hydraulic fluid in an upper cylinder chamber flows to a lower cylinder chamber through an extension-side hydraulic fluid passage, an extension-side orifice hydraulic fluid passage, an extension-side back-pressure chamber, an axial hydraulic fluid passage, a radial hydraulic fluid passage, a compression-side back-pressure chamber, an extension-side check valve and a compression-side hydraulic fluid passage. During a compression stroke, the hydraulic fluid in the lower cylinder chamber flows to the upper cylinder chamber through the compression-side hydraulic fluid passage, the compression-side orifice passage, the compression-side back-pressure chamber, the radial hydraulic fluid passage, the axial hydraulic fluid passage, the extension-side back-pressure chamber, the compression-side check valve and the extension-side hydraulic passage. The hydraulic fluid passage for an extension stroke and the hydraulic fluid passage for a compression stroke have some elements in common, thus simplifying the structure of the controllable damping force hydraulic shock absorber.
Owner:HITACHI ASTEMO LTD

Hydro-pneumatic tensioner with stiffness altering secondary accumulator

InactiveUS20050074296A1Reduce stiffnessReduce maximum tensionDrilling rodsSpringsEngineeringPiston rod
A hydro-pneumatic tensioner includes a barrel having an inner bore and a pressurized fluid contained within to form at least part of a primary accumulator having a preset volume of gas at a preselected pressure. A piston having a piston rod extending from an aperture in the barrel is slidably carried in the bore of the barrel and is in communication with the pressurized fluid and positioned to increase the fluid pressure when the piston strokes in the direction of the pressurized fluid. A secondary accumulator also has a preset volume of gas at a preselected pressure. A fluid separator maintains functional separation of the fluid volumes of the primary and secondary accumulators when the primary accumulator pressure is less than a preselected secondary accumulator pressure. The fluid separator allows functional combining of the fluid volumes of the primary and secondary accumulators when the primary accumulator pressure equals or is greater than the preselected secondary accumulator pressure.
Owner:ABB VETCOGRAY

Methods and apparatus for suspension lock out and signal generation

Methods and apparatus for regulating the function of a suspension system are disclosed herein. Suspension characteristics often contribute to the efficiency of a suspended system. Depending on the desired operating parameters of the suspended system, it may be desirable to alter the functional characteristics of the suspension from time to time in order to maintain or increase efficiency. The suspension hereof may be selectively locked into a substantially rigid configuration, and the damping fluid may be phase separated and / or cooled to increase damping rate during use (or offset rate degradation). The suspension hereof may generate power usable to achieve any or all of the foregoing or to be stored for use elsewhere in the suspended system or beyond.
Owner:FOX FACTORY

Electronically controlled frequency dependent damping

A gas damper includes a gas pressurized working chamber and valving within the piston to control flow of the gas through the piston. A system is in communication with the working chamber to control the gas pressure within the working chamber in order to control the damping characteristics of the damper. An electronic control unit is utilized to control the opening and closing of the valving within the piston to also control the damping characteristics of the damper.
Owner:TENNECO AUTOMOTIVE OPERATING CO INC

Shock absorber assembly

A shock absorber assembly includes a motion damping means that is filled with a fluid in operation and has a pair of relatively moveable parts (12, 14) and valve means (26) permitting flow of the fluid between the parts. The parts comprise a first part (12) and a second part (14) in which the first part is receivable whereby the parts are arranged for relative retracting and extending movement during which fluid is forced through the valve means (26) at respective predetermined controlled flow rates so as to dampen the movement. The relatively moveable parts contain respective primary chambers (24, 29) for the fluid. The first part is substantially smaller in cross-section than the second part to define an intermediate chamber (52) about the first part within the second part. Lateral port means (56) communicates the intermediate chamber (52) and the primary chamber (24) of first part (12). The flows at respective predetermined controlled flow rates are limited to respective flows (i) directly from the primary chamber (24) of the first part (12) to the primary chamber (29) of the second part (14) and (ii) via the intermediate chamber (52) and lateral port means (56) from the primary chamber (29) of the second part (14) to the primary chamber (24) of the first part (12).
Owner:ROBERTSON GRAEME KERSHAW

Rotary damper

InactiveUS6336252B1Enhanced level of machining precisionImprove the forceBuilding braking devicesWing fastenersFriction forceBase line
A rotary damper is adapted to exert braking force to an upswung door, a toilet lid or the like when the door is closed and dampen the impact produced by the closing door by a damping force far greater than the one obtained by a conventional rotary damper using viscous shearing resistance. The rotary damper can also make the door open by a force far smaller than a conventional rotary damper. A movable shaft is rotatably housed in a casing and has a cylindrical shaft section including an arcuate non-resilient section extending from a peripheral edge thereof to an axial base line close to the other free peripheral edge thereof and an eccentric resilient section extending from the axial base line to the other free peripheral edge thereof with its eccentricity increasing as a function of the distance from the base line relative to the radius of curvature of the inner peripheral surface so as resiliently abut the inner peripheral surface. The frictional force between the eccentric rest section and the inner peripheral surface increases when the movable shaft is driven to rotate to close the door to which it is fitted but falls remarkably when the movable shaft is driven to rotate in the opposite sense to open the door.
Owner:SUGATSUNE IND CO LTD

Electric viscous fluid device and electronic equipment

An electrorheological fluid device and an electronic apparatus, which realize various hardness or tension in a portion of the device or apparatus to which a human body touches, enabling application to a product that needs to have portability. An electrorheological fluid device is formed by including: a container capable of containing fluid internally; a pair of electrodes having flexibility, disposed in the container so as to oppose each other; and an electrorheological fluid having an elastic property changeable in accordance with an electric field generated between the electrodes, the electrorheological fluid being contained in the container and disposed between the electrodes. By using the electrorheological fluid device to various electronic apparatus, the hardness, tension, texture, shape, or the like of the apparatus can be electrically controlled.
Owner:SONY CORP

Bi-stable shock absorber assembly

A shock absorber assembly including a fluid for absorbing forces between the body and the wheel of a motor vehicle. The shock absorber includes a valve having a resilient disc engaging a piston for impeding the passage of fluid through the aperture of the piston. A bi-stable solenoid is disposed in the housing and is interconnected with the resilient disc of the valve. The bi-stable solenoid's armature is moveable between a first stable position for applying a first biasing force against the resilient disc of the valve and a second stable position for applying a second biasing force being less than the first biasing force against the resilient disc of the valve. The adjustment of the biasing force on the valve also adjusts the damping force of the shock absorber.
Owner:BEIJINGWEST INDUSTRIES

Vibration damper with adjustable damping force

The vibration damper with an adjustable damping force includes a cylinder filled with a damping medium, a piston rod axially movable in the cylinder and carrying a piston which divides the cylinder into a first working space on the piston rod side and a second working space on the side away from the piston rod, a first adjustable damping valve which is connected to at least one of the two working spaces by means of a fluid connection, at least one second valve which is connected hydraulically in parallel to the first adjustable damping valve, and a third damping valve arranged in series to and upstream from both the first and second valves, the third damping valve moving in a closing direction as a function of a flow velocity of the damping medium through the third damping valve.
Owner:ZF FRIEDRICHSHAFEN AG

Washer, damper thereof, and control method thereof

The present invention provides a washer, damper thereof, and control method thereof, by which noise is reduced by adjusting a damping force of the damper in a manner of turning on / off power of the damper according to an oscillation frequency of a vibrating body such as a washer. The control method reduces noise by supplying power to a damper in an excessive vibration state of a vibrating body such as a washer or by cutting off the power supplied to the damper in a normal vibration state of the vibrating body.
Owner:LG ELECTRONICS INC

Vehicle suspension system

A vehicle suspension system including: (a) a suspension spring interconnecting a vehicle body and a wheel; (b) an actuator having an electric motor, such that the actuator is capable of generating, based on a force of the electric motor, an actuator force forcing the body and the wheel toward and away from each other, and causing the generated actuator force to act as a damping force against displacement of the body and the wheel; and (c) a control device for controlling the actuator force generated by the actuator, by controlling operation of the electric motor. The control device is capable of establishing a constant-force generating state in which the actuator force is constantly generated as a constant actuator force by the actuator with supply of an electric power thereto from a battery as an electric power source of the electric motor such that the generated constant actuator force acts in a rebound direction or a bound direction. The control device controls the constant-force generating state, based on a charge state of the battery.
Owner:TOYOTA JIDOSHA KK

Methods and apparatus for variable damping adjuster

Methods and apparatus for a damper adjustment assembly that comprises an adjuster having a first detent at a first axial location, and a second detent at a second axial location. The assembly may further comprise a housing having a keeper for engaging the first and second detents. The method may comprise rotating the adjuster within the housing, and engaging the keeper with the first detent at the first axial location. The method may further comprise further rotating the damping adjuster within the housing and engaging the keeper with the second detent at the second axial location on the adjuster.
Owner:FOX FACTORY

Methods and apparatus for suspending a vehicle shield

ActiveUS20100307329A1Attenuate blast effectReduce impactPortable framesArmourEngineeringShock absorber
A shock absorber system for use with a vehicle having a shield to reduce the effects of a shock event.
Owner:FOX FACTORY

Hydraulic shock absorber

A piston connected with a piston rod is fitted in a cylinder having a hydraulic fluid sealed therein. A damping force is generated through extension and compression disk valves and an orifice. Vehicle height adjustment is performed with a self-leveling mechanism by transferring the hydraulic fluid between the cylinder and a hydraulic fluid tank. A bladder of the hydraulic fluid tank is clamped between an outer flange portion of a partition member and a casing. Because the hydraulic fluid tank is formed without welding, it is possible to avoid contamination of the hydraulic fluid by welding sputter and thermal deformation. Provision of an O-ring on the outer flange portion can reduce the pressure acting from a reservoir on the clamped portion of the bladder and hence prevent dislodging of the bladder.
Owner:HITACHI ASTEMO LTD

Depth compensated subsea passive heave compensator

ActiveUS7934561B2Mitigate/eliminate the depth effectEliminate the effects ofDrilling rodsDerricks/mastsEngineeringPiston rod
A depth compensated passive eave compensator comprises a first cylinder connected at its upper end to a vessel. A piston rod extends from a piston located within the first cylinder through the lower end thereof and is connected to subsea equipment. A second cylinder contains a compressed gas which maintains pressure beneath the piston of the first cylinder. The upper end of the first cylinder is connected to the upper end of a third cylinder having a piston mounted therein. A piston rod extending from the piston of third cylinder extends through the lower end thereof thereby applying the pressure of the sea to the piston of the third cylinder.
Owner:INTERMOOR

Hydraulic shock absorber

A piston connected with a piston rod is fitted in a cylinder having a hydraulic fluid sealed therein. A damping force is generated through extension and compression disk valves and an orifice. Vehicle height adjustment is performed with a self-leveling mechanism by transferring the hydraulic fluid between the cylinder and a hydraulic fluid tank. A bladder of the hydraulic fluid tank is clamped between an outer flange portion of a partition member and a casing. Because the hydraulic fluid tank is formed without welding, it is possible to avoid contamination of the hydraulic fluid by welding sputter and thermal deformation. Provision of an O-ring on the outer flange portion can reduce the pressure acting from a reservoir on the clamped portion of the bladder and hence prevent dislodging of the bladder.
Owner:HITACHI ASTEMO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products