Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2270results about "Sagnac effect gyrometers" patented technology

Temperature compensation method for denoising fiber-optic gyroscope on basis of time series analysis

A temperature compensation method for denoising a fiber-optic gyroscope on the basis of time series analysis comprises four steps of: step 1, designing an experimental scheme, performing fixed point low and high temperature testing experiment on the fiber-optic gyroscope, and utilizing acquisition software for data acquisition; step 2, performing time series analysis on the zero offset data of the gyroscope, and establishing the mathematical model of the random error of the fiber-optic gyroscope; step 3, adopting a kalman filtering algorithm to filter random noise in the zero offset data of the fiber-optic gyroscope; and step 4, utilizing the data which is de-noised by the kalman filtering to identify the model structure of the temperature shift error of the fiber-optic gyroscope, and calculating the parameters of the identified model. The method establishes the multinomial model of the static temperature shift error of the fiber-optic gyroscope through time series analysis, kalman filtering denoising treatment and identification of the temperature shift error model structure and parameters. The method completely meets the real-time compensation requirement on the project, and has a better practicable value and a wide application prospect in the technical field of aerospace navigation.
Owner:BEIHANG UNIV

Freedom positioning system for robot

InactiveCN101201626ASolve the self-positioning problemEffective pose informationInstruments for road network navigationPosition fixationEngineeringCoal
The invention provides a robot independent positioning system and belongs to a robot intelligent control device. The invention solves the high-precision and independent positioning problem of the robot in the underground operation. The invention comprises an installation platform, a sensor subsystem, a data processing subsystem and a voltage conversion module; the sensor subsystem, the data processing subsystem and the voltage conversion module are arranged on the installation platform; the upper part of the installation platform is a turntable carrying the sensor subsystem; a fixed base on the lower part of the installation platform has a structure of a sealed cavity; the inside of the fixed base is provided with the data processing subsystem and the voltage conversion module; the sensor subsystem comprises an inertial sensor module and a three-dimensional digital compass; the data processing subsystem comprises a central controller, a data preprocessing module, a data integration module and a dead reckoning module; the data preprocessing module, the data integration module and the dead reckoning module are arranged in the central controller. The invention can be used for the intelligent robot working in the underground environment such as coal mines, tunnels, caverns and so on; the invention can be used for the independent positioning of robots, shield machines, underground locomotives and so on; the invention provides effective pose information for intelligent robots to finish such tasks as reconnaissance, exploration and search in the underground environment.
Owner:湖北鹰特飞智能科技有限公司

Three axis optical fibre gyroscope inertia measurement unit integral structure

The invention relates to an integral structure of a triaxial optical fiber gyro inertia measuring unit, which comprises a mounting skeleton, three fiber optic gyro scopes, three accelerometers, a light source, a circuit board and a vibration damper. The mounting skeleton adopts a hollow hexahedron frame structure, each group of mounting holes are symmetrically arranged, and mounting lug bosses are arranged on the positioning end surface of the mounting holes. Three fiber optic gyro scopes form mutual space and are orthogonally arranged on the outer surface of the mounting skeleton, the light source and the circuit board are respectively arranged on the outer surface of the mounting skeleton which is corresponding to the three fiber optic gyro scopes, the three accelerometers form the mutual space and are orthogonally arranged on the inner surface of the mounting skeleton which is corresponding to the three fiber optic gyro scopes and near the geometric center of the mounting skeleton, and the vibration damper is arranged on the outer surface of the mounting skeleton. The measuring unit has the advantages that the quality is light; the degree of deviation between the mass center of an inertia measuring unit and the geometric mounting center is very small; the dynamic testing precision is high; the temperature field distribution of the inertia measuring unit is beneficial for the temperature compensation and control of each component, and the like.
Owner:BEIHANG UNIV

Dual-polarization interferometric fiber-optic gyro

The invention discloses a dual-polarization interferometric fiber-optic gyro which belongs to the field of communication technology. The fiber-optic gyro comprises a light source, two linear polarized light generating circuits, two signal detection light paths, a polarized beam splitter/combiner, a polarization-maintaining coupler, a phase modulator and a polarization-maintaining fiber-optic ring; wherein the light source is connected with the input ends of the two linear polarized light generating circuits by optic fibers; two output ends of the two linear polarized light generating circuits are respectively connected with two ports at the same side of the polarized beam splitter/combiner by optic fibers through one signal detection light path; the port at the other side of the polarized beam splitter/combiner is connected with the polarization-maintaining fiber-optic ring through the polarization-maintaining coupler; and the phase modulator is connected between the polarization-maintaining fiber-optic ring and the polarization-maintaining coupler by optic fibers. Compared with the prior art, the fiber-optic utilizes the dual-polarized light to carry out the detection, thereby greatly improving the measuring precision and the measuring stability of the rotating angular velocity; meanwhile, the fiber-optic gyro has the advantages of simple structure, low cost, small volume, high sensitivity and wide application range simultaneously.
Owner:PEKING UNIV

Fiber optic gyroscope temperature drift modeling method by optimizing dynamic recurrent neural network through genetic algorithm

The invention discloses a fiber optic gyroscope temperature drift modeling method by optimizing a dynamic recurrent neural network through a genetic algorithm. The fiber optic gyroscope temperature drift modeling method by optimizing the dynamic recurrent neural network through the genetic algorithm comprises the following steps of (1) initializing network parameters, and establishing an improved Elman neural network model; (2) obtaining a training and testing sample; (3) training an improved Elman neural network, and optimizing model parameters through the genetic algorithm; (4) outputting forecasts of an fiber optic gyroscope, and compensating errors. The output of the fiber optic gyroscope processed through a denoising algorithm is trained by introducing the improved Elman neural model with self-feedback connection weight, constant iterative optimization is carried out on the model parameters through the genetic algorithm, and the optimal model is obtained according to the magnitude of the errors of the model under different parameters. According to the fiber optic gyroscope temperature drift modeling method by optimizing the dynamic recurrent neural network through the genetic algorithm, the complexity of the algorithm is taken into consideration, the accuracy of the fiber optic gyroscope temperature drift model is improved, the application of the fiber optic gyroscope temperature drift model in engineering is expanded, and certain practical significance is achieved.
Owner:SOUTHEAST UNIV

Photoelectric detector amplitude versus frequency character test method for optical fiber peg-top

InactiveCN101126784AAccurate Frequency CharacteristicsAccurately obtain frequency characteristicsSagnac effect gyrometersContactless testingGyroscopePhotodetector
The utility model discloses a method for testing the frequency properties of the photoelectric detector used for fiber optic gyroscopes. A signal generator produces sinusoidal signals and adds the signal to a light intensity modulator to carry out sinusoidal modulation on the optical power of the optical signal from the fiber source in order to produce an optical signal with sinusoidal components. The measured photodetector converts the modulated optical signal into an electrical signal and samples the electric signal by means of high-speed data acquisition card, then conducts narrowband filter and signal processing over the collected samples and calculates the corresponding frequency response. The frequency sequence pre-selected by a numerical control system changes the frequency at which the sine wave generator (NC) system sends out signals , tests a series of frequency point responses, which can be combined into an amplitude frequency response curve of the measured photodetector, and the curve is transmitted to the terminal computer for displaying and storage. By controlling all the test processes by numerical control system, the utility model has the advantages of automatic measurement, fast testing speed, high testing precision, and therefore is suitable for carefully weighing the photodetector frequency performance in the whole operating frequency range.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products