Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3598results about "Force measurement by measuring optical property variation" patented technology

Device for monitoring state of power transmission line tower-line system

The invention discloses a device for monitoring the state of a power transmission line tower-line system, which fully utilizes the advantages of corrosion resistance, wide operation temperature range, anti-electromagnetic interference, passivity, long measuring distance, reliable operation and long service life and the like of optical fiber sensors to configure the optical fiber sensors on a transmission conductor and a tower in a quasi-distributed structure for detecting the temperature, the strain and the acceleration of the transmission conductor and the multipoint stress variation on the tower which are transmitted to an optical modulator demodulator for demodulating and are sent to a computer analyzing and processing system for calculating to obtain the icing quality, the waving amplitude, the breeze vibration amplitude and frequency and the sag of the transmission conductor, and the inclination angle of the tower, thus realizing the simultaneous monitoring on the icing, the waving, the breeze vibration and the sag of the transmission conductor, and the inclination angle state of the tower, and being capable of finishing long-time reliable operation under the on-site severe environment conditions.
Owner:SICHUAN HUIYUAN OPTICAL COMM CO LTD

Fiber-Bragg-grating-based strain measuring apparatus, system and method

The invention was originally developed to determine the strain-relief capability of a fusion splice protector as well as the compressive stress imparted to a fusion splice by the splice protector. The invention also permits performance and comparative analyses of splice protectors as well as any package in which the optical fiber is at least partially disposed. To those ends a fiber Bragg grating (FBG) is axially arranged relative to the package such that a free or reference section of the FBG protrudes from the package while a shielded section lies within the package. Broadband light is supplied to the FBG which reflects certain wavelengths that are measured by an optical spectrum analyzer. The FBG reflected spectra will be split into two peaks as the reference and shielded sections experience different amounts or types of stress thereby providing a powerful analysis tool. A wavelength shift in the reflected spectra reveals the amount of stress experienced by the reference and free sections and permits a qualitative and quantitative analysis of the stress applied by the package and the package's ability to protect fiber from stress (e.g. such as that imposed by a tension pull test). Measurements may be made after a variety of conditions are changed such as splice protector curing, axial tension application, axial tension release, time, and age accelerating environments. Comparative studies and various other calculations may also be performed to evaluate different packages.
Owner:CIENA

Self-calibrating optical fiber pressure, strain and temperature sensors

Broadband energy incident on a transducer having partially or fully reflective surfaces separated by a gap which is greater than the coherence length of the broadband energy but smaller than one-half a coherence length of a band of energy within said broadband energy causes a portion of the spectral content of the broadband energy corresponding to a coherence length greater than twice the gap length to exhibit interference effects while the average power of the broadband energy remains unaffected. Splitting energy reflected from the transducer into two beams which are filtered at preferably similar center frequencies but with different pass bands yields beams which are radically different in sensitivity to changes in gap length. Analyzing the beams to derive a ratio of powers (since source intensity and fiber attenuation in a common fiber are thus self-cancelling) allows high accuracy and high resolution absolute measurement of temperature, pressure or strain. Effects of any of these physical parameters which are not of interest in a measurement can be fully compensated or made arbitrarily insignificant in a simple transducer structure of extremely small size. Use of broadband energy permits measurement over greater lengths of optical fiber.
Owner:VIRGINIA TECH INTPROP INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products