Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2519 results about "Pulse width modulated" patented technology

Pulse Width Modulation (PWM) is a fancy term for describing a type of digital signal. Pulse width modulation is used in a variety of applications including sophisticated control circuitry. A common way we use them here at SparkFun is to control dimming of RGB LEDs or to control the direction of a servo motor.

Linear lighting apparatus and methods

InactiveUS7221104B2Limited life-spansAccurate conditionPlanar light sourcesPoint-like light sourceLight equipmentAs Directed
Linear lighting systems and methods. In one example, two or more lighting elements having an essentially linear or curvilinear shape are coupled together to form a lighting system. Each lighting element includes a group of LEDs arranged so as to illuminate the essentially linear or curvilinear shape of the lighting element. Each element may include LEDs to generate the same color light, and/or LEDs to generate light of different colors. Additionally, each element may include one or more controllers to control the LEDs so as to create a variety of temporal and/or color-oriented lighting effects. The controller(s) may employ one or more of a variety of control techniques to control the LEDs, such as those involving analog control signals or pulse-width modulated (PWM) control signals. The lighting elements of the system may each be configured as a “stand alone” unit working within the system, producing respective lighting effects that may or may not be coordinated with each other. Alternatively, two or more elements of the system may be configured as addressable lighting elements to facilitate coordination of the elements as a networked lighting system. Any of the foregoing linear lighting systems may be used in a variety of interior or exterior, as well as direct or indirect, lighting applications. In one example, such lighting systems are particularly well-suited as replacements or substitutes for neon lighting installations.

X ray high frequency high voltage generator for medical use diagnose

The invention discloses a medical diagnosis X-ray high frequency high pressure generator, comprising a power supply, a central control unit, a high frequency inverter circuit, a pulse width modulation driving circuit and a high pressure transform and high pressure output circuit. The generator transforms the industrial power to two ways of high frequency and high pressure, a positive direct current high pressure and a negative direct current high pressure are obtained through rectifying and wave-filtering to provide an X-ray ball tube to work. As the frequency is high, the ripple of the rectified and wave-filtered high electric pressure is tiny, and the X-ray quality projected by the X-ray ball tube is high, and the clearance of photos of the perspective and photograph is also high. The X-ray ball tube of a photograph bed or the X-ray ball tube of an electric perspective bed can work if allocated with the high pressure power. The invention is convenient for the medical staff to use the X-ray to do the work of diagnosing diseases. As the high pressure power supply, the invention is also suitable in the safety inspection fields such as industrial flaw detection, civil aviation, station and customs etc, and provides a stable and high qualified high pressure power supply for the equipments.

Photovoltaic module-mounted ac inverter

A photovoltaic module-mounted AC inverter circuit uses one or more integrated circuits, several power transistors configured as switches, several solid-dielectric capacitors for filtering and energy storage, several inductors for power conversion and ancillary components to support the above elements in operation. The integrated circuit includes all monitoring, control and communications circuitry needed to operate the inverter. The integrated circuit controls the activity of pulse-width modulated power handling transistors in both an input boost converter and a single-phase or multi-phase output buck converter. The integrated circuit also monitors all power processing voltages and currents of the inverter and can take appropriate action to limit power dissipation in the inverter, maximize the available power from the associated PV module and shut down the inverter output if the grid conditions so warrant. The integrated circuit implements power line communications by monitoring the AC wiring for signals and generating communications signals via the same pulse-width modulation system used to generate the AC power. Communications is used to report inverter and PV module status information, local identification code and to allow for remote control of inverter operation.

Bridgeless boost converter with PFC circuit

A boost type power supply circuit for providing a DC output voltage comprising first and second semiconductor switches coupled between respective input lines and a common connection; an AC input voltage from an AC source being supplied across the input lines; first and second diodes coupled in series with respective ones of the switches; third and fourth diodes coupled across respective ones of the switches in a free-wheeling relationship with the switches; an inductance coupled in at least one of the input lines; a controller for controlling the conduction times of the switches by providing a pulse width control signal to each of the switches; wherein the controller turns on at least one of the switches during a positive half cycle of the AC voltage to allow energy storage in the inductance and turns off the at least one switch to allow the energy stored in the inductance to be supplied to an attached load through one of the first and second diodes and one of the third or fourth diodes; and the controller turns on at least one of the switches during a negative half cycle of the AC voltage to allow energy storage in the inductance and turns off at least one switch to allow the energy stored in the inductance to be supplied to the attached load through one of the first and second diodes and one of the third and fourth diodes. The controller determines an on-time and an off-time of a pulse of the pulse width modulated control signal during each half cycle of the AC voltage, the on-time and off-time of the pulse being controlled to regulate said output voltage and to provide power factor correction of said AC input voltage, based on either voltage sensing or current sensing.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products