Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4069 results about "Gate driver" patented technology

A gate driver is a power amplifier that accepts a low-power input from a controller IC and produces a high-current drive input for the gate of a high-power transistor such as an IGBT or power MOSFET. Gate drivers can be provided either on-chip or as a discrete module. In essence, a gate driver consists of a level shifter in combination with an amplifier. A gate driver IC serves as the interface between control signals (digital or analog controllers) and power switches (IGBTs, MOSFETs, SiC MOSFETs, and GaN HEMTs). An integrated gate-driver solution reduces design complexity, development time, bill of materials (BOM), and board space while improving reliability over discretely-implemented gate-drive solutions.

Highly efficient series string LED driver with individual LED control

A current source generates, with high efficiency, a current that is substantially constant over a wide range of output voltages. This current is injected into the first end of a series-connected string (hereinafter referred to as string) of LEDs, with the second end of the string connected through a resistor to ground. The voltage developed across this resistor, which is a measure of current flow in the series string, is fed back to the current source, wherein feedback maintains nearly constant current output over a wide range of output voltages. A switch, such as a field effect transistor (FET) is placed in parallel with each LED in the string. A level shift gate driver couples a pulse width modulated control signal to the gate of each FET. When the FET across a particular LED is on, substantially all the current flows through the FET rather than the LED, and little or no light is emitted. Because the one resistance of the FET is very low, the power dissipated in the FET (current squared times resistance) is also very low. With the FET turned on, the forward voltage drop of the LED it is controlling drops to near zero, since little current is flowing through the LED. However, because the current source is designed to provide constant current over a wide range of output voltages, the current flow through the other LEDs in the series string changes little. When the FET is turned off, substantially all of the current flows through the associated LED, turning it on. By modulating the duty cycle of each FET, the brightness of each associated LED may be varied smoothly over its full range.
Owner:TEXAS INSTR INC

Contactless multi-charger system and controlling method thereof

The invention discloses a wireless multi-charger system capable of saving the total charging time of a large number of wireless power transmission devices since one wireless multi-power transmission device includes a plurality of the wireless power transmission devices so that a large number of the wireless power transmission devices can be charged with electricity, and preventing the damage of the wireless power transmission devices and the wireless multi-power transmission device although foreign substances are put on charger blocks that are not charged. The wireless multi-charger system (A) according to the present invention includes an external body formed as a wireless charger case (11), wherein the wireless charger case has a wireless charger table (12) formed in an upper surface thereof, wherein the wireless charger table has a plurality of charger blocks (14), each of which includes a primary charging core (13), wherein the full-bridge resonant converter is present in a plural form and coupled respectively to a plurality of the charger blocks, wherein a multi-gate driver module is provided to transmit a converted power signal to each of a plurality of the full-bridge resonant converters under the control of the central controller, and wherein a reception signal processor module is coupled to a plurality of the charger blocks for processing a signal transmitted from the wireless power transmission device (30) and supplies the processed signal to the central controller.
Owner:INTEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products