Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3668results about "Differential amplifiers" patented technology

Self-biasing CMOS PECL receiver with wide common-mode range and multi-level-transmit to binary decoder

A pseudo-emitter-coupled-logic (PECL) receiver has a wide common-mode range. Two current-mirror CMOS differential amplifiers are used. One amplifier has n-channel differential transistors and a p-channel current mirror, while the second amplifier has p-channel differential transistors and an n-channel current mirror. When the input voltages approach power or ground, one type of differential transistor continues to operate even when the other type shuts off. The outputs of the two amplifiers are connected together and each amplifier receives the same differential input signals. The tail-current transistor is self-biased using the current-mirror's gate-bias. This self biasing of each amplifier eliminates the need for an additional voltage reference and allows each amplifier to adjust its biasing over a wide input-voltage range. Thus the common-mode input range is extended using self biasing and complementary amplifiers. The complementary self-biased comparators can be used for receiving binary or multi-level-transition (MLT) inputs by selecting different voltage references for threshold comparison. Using the same reference on both differential inputs eliminates a second reference for multi-level inputs having three levels. Thus binary and MLT inputs can be detected and decoded by the same decoder.
Owner:DIODES INC

Differential circuit, amplifier circuit, driver circuit and display device using those circuits

A differential circuit and an amplifier circuit for reducing an amplitude difference deviation, performing a full-range drive, and consuming less power are disclosed. The circuit includes a first pair of p-type transistors and a second pair of n-type transistors. A first current source and a first switch are connected in parallel between the sources of the first pair of transistors, which are tied together, and a power supply VDD. A second current source and a second switch are connected in parallel between the sources of the second pair of transistors, which are tied together, and a power supply VSS. The circuit further includes connection changeover means that performs the changeover of first and second pairs between a differential pair that receives differential input voltages and a current mirror pair that is the load of the differential pair. When one of the two pairs is the differential pair, the other is the current mirror pair. In a differential amplifier circuit, there is provided an added transistor connected in parallel to a transistor, which is one transistor of a differential pair transistors, whose control terminal is a non-inverting input terminal. The added transistor has a control terminal for receiving a control voltage which is set so that, when an input voltage applied to the non-inverting input terminal is in a range in which the transistor whose control terminal is the non-inverting input terminal is turned off, the added transistor is turned on.
Owner:RENESAS ELECTRONICS CORP

Switch circuit and method of switching radio frequency signals

InactiveUS20050017789A1Improving RF switch isolationRaise the compression pointTransistorSolid-state devicesMOSFETEngineering
A novel RF buffer circuit adapted for use with an RF switch circuit and method for switching RF signals is described. The RF switch circuit is fabricated in a silicon-on-insulator (SOI) technology. The RF switch includes pairs of switching and shunting transistor groupings used to alternatively couple RF input signals to a common RF node. The switching and shunting transistor grouping pairs are controlled by a switching control voltage (SW) and its inverse (SW_). The switching and shunting transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. The stacking of transistor grouping devices, and associated gate resistors, increase the breakdown voltage across the series connected switch transistors and operate to improve RF switch compression. A fully integrated RF switch is described including digital control logic and a negative voltage generator integrated together with the RF switch elements. In one embodiment, the fully integrated RF switch includes a built-in oscillator, a charge pump circuit, CMOS logic circuitry, level-shifting and voltage divider circuits, and an RF buffer circuit. Several embodiments of the charge pump, level shifting, voltage divider, and RF buffer circuits are described. The inventive RF switch provides improvements in insertion loss, switch isolation, and switch compression.
Owner:PSEMI CORP

Broad output current scope low pressure difference linear manostat

A low dropout linear voltage regulator with wide output current range and low pressure difference, comprises an error amplifier in the folding common source and common gate structure, a buffer circuit, a driving element, a feedback circuit, a load capacitance equivalent series resistance compensating circuit and a multistage Miller compensation circuit, wherein the buffer circuit changes the low frequency pole into a medium frequency pole and a high frequency pole; the large load capacitance of the load capacitance equivalent series resistance compensating circuit pushes the main pole to the low frequency, causing the gain crossover point to push inwards, and generating a medium frequency zero point for counteracting the medium frequency pole connected serially with the equivalent series resistance; the stride multilevel Miller compensation circuit generates a medium high frequency pole and a medium high frequency zero point slightly smaller than the medium high frequency pole for advancing the phase margin, thereby not only adding the unity gain bandwidth, but also saving considerable chip area. When the output current has a large change range, the structure provided by the invention generates wider unity gain bandwidth, provides the phase margin of greater than 85 degrees, ensures the stability of the system and advances the low pressure difference linear voltage stabilization performance.
Owner:WUHAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products