Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

448 results about "Common mode feedback" patented technology

High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier

The invention belongs to the technical field of analog IC (Integrated Circuit) design, in particular to a high-bandwidth low-power consumption frequency-compensation three-stage operational amplifier. The amplifier comprises an input stage, a second stage, an output stage, a common mode feedback stage, a comprehension circuit, an internal feedforward circuit, wherein the second stage is connectedwith the input stage, the output stage is connected with the second stage and used for amplifying a signal output by the second stage and driving an external load circuit, the common mode feedback stage extracts the common mode level of the differential output stage and stabilizes the common mode level, the comprehension circuit comprises a traditional trsanscondutance comprehension circuit, a miller comprehension circuit and a resistor for separating a high-frequency zero pole, and the internal feedforward circuit is used for comprehending an internal additional pole and forming a push-pull circuit together with the output stage to reduce static power consumption. The three-stage operational amplifier realizes high gain, high bandwidth and high stability under the condition of little DC power consumption and can be used in a high-speed analog-digital conversion circuit, such as a sigma-delta modulator suitable for the bandwidth of an LTE (Line Terminator Equipment) wireless communication protocol.
Owner:FUDAN UNIV

Method for compensating common mode feedback circuit frequency of two-stage amplifier

The invention discloses a common-mode feedback circuit frequency compensation method of a dual-stage amplifier, which belongs to the analog integrated circuit design field. One common-mode feedback circuit is adopted in the dual-stage amplifier to reduce the area and the power consumption of the feedback circuit; the dual-stage amplifier adopts a fully-differential input/output structure; a differential output terminal is used for sampling the common-mode output level; a first-stage amplifying circuit thereof comprises a controllable biasing circuit; a common-mode feedback control signal controls the first-stage common-mode output level and the second-stage common-mode output level of the amplifier at the same time through the controllable biasing circuit; a feedback amplifier is realized by adopting a dual-stage operational amplifier with miller compensation. The left half plane zero point generated by the feedback amplifier in a loop circuit counteracts a certain left half plane pole in a prime amplifier, thereby forming a stable compensation loop circuit. The common-mode feedback circuit frequency compensation method has the advantages of less feedback circuit elements, lower feedback circuit power consumption, high low-frequency loop gain and better compensation phase margin.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

Ultra linear high frequency transconductor structure

A transconductor block including a Czarnul tuning network, transconductance resistors, an input voltage follower amplifier, a common mode circuit, PMOS transistors coupled in cascode configuration, an input current source, and high gain amplifiers that drive NMOS transistors at the output. The input voltage follower amplifier receives a differential input signal including a common mode voltage and applies the differential input signal to the Czarnul tuning network. The Czarnul tuning network includes series resistors and is coupled in parallel with the transconductance resistors. The common mode circuit receives the differential input signal and a reference common mode voltage and provides a bias voltage and a common mode feedback voltage. The common mode circuit asserts the common mode feedback voltage to the output PMOS transistors to establish a DC output current and to minimize drift of the common mode voltage of the transconductance block. Also, the bias voltage is level shifted from the common mode signal. The high gain amplifiers maintain the output of the Czarnul tuning network and transconductance resistors at the bias voltage. The high gain amplifiers are coupled to the input current sources and to the NMOS transistors in a negative feedback configuration. The high gain amplifiers drive the NMOS transistors to reflect an output current that corresponds to the input voltage signal.
Owner:CONEXANT

High accuracy capacitive readout circuit with temperature compensation

ActiveCN102072737ASolving high impedance node biasing issuesHigh precisionMitigation of undesired influencesIntegratorSwitching cycle
The invention discloses a high accuracy capacitive readout circuit with temperature compensation, belonging to the design field of integrated circuits. The circuit realizes high accuracy capacitive readout owing to the adoption of a chopping modulation technology, and can simultaneously realize temperature compensation by adjusting temperature characteristics of internal voltage reference. The circuit comprises an oscillator, a voltage reference source, a full-differential operational amplification unit, a common-mode operational amplification unit, a low pass filter, a switch device and a digital circuit. The voltage reference source generates a square wave in cooperation with a single-pole double throw switch, and the square wave is applied to an intermediate polar plate of a differential capacitance to be detected in order to implement modulation. The full-differential operational amplification unit and a feedback capacitance constitute a charge integrator to detect a transfer charge formed by the variation of the capacitance to be detected. Demodulation is realized by the switch device and the low pass filter. Both an input end and an output end of the full-differential operational amplification unit are set through a switch cycle. The common-mode operational amplification unit and the feedback capacitance constitute a common-mode feedback loop which is connected with the input end of the full-differential operational amplification unit to play the role of inputting common-mode voltage stably.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Method for compensating frequency of wideband common mode feedback loop of two-stage operational amplifier

The invention discloses a method for compensating the frequency of a broadband common mode feedback ring circuit for a two-stage operational amplifier, belonging to the field of analog integrated circuit design. A broadband feedback amplifier in the two-stage operational amplifier with the Miller compensation is used as the common mode feedback ring circuit so as to reduce the area and the power consumption of the common mode feedback circuit; the two-stage operational amplifier has only one main pole in the range of the unit gain bandwidth, a fully differential input and output structure is adopted, the sampling of the common mode output level is performed by the differential output end; and a control signal fed back by the common mode simultaneously controls the output level of a first-stage common mode and the output level of a second-stage common mode of the operational amplifier through a controllable bias circuit. The frequency of the main pole of the broadband feedback amplifier is far higher than the unit gain bandwidth of the operational amplifier, therefore the margin of phase position of the common mode ring circuit is basically equal to that of the operational amplifier, thereby forming the stable feedback ring circuit. The method has the advantages of few elements for a common mode feedback circuit, lower power consumption of the common mode feedback circuit and simpler and more convenient circuit design.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

RX dual-band mixer

A dual-band input transceiver block is formed to operably receive one of a 2.4 GHz radio frequency signal or a 5.0 GHz radio frequency transceiver signal in a manner that minimizes duplication of circuitry and creates a combined circuit path for RF front end input stages for much of the input stage. More specifically, the embodiments of the present invention include separate amplification and mixing stages whose outputs are combined by a stabilized load with circuitry for removing a common mode feedback signal. As such, downstream components, such as amplifiers, filters, analog-to-digital converters, and other input path circuit elements, are not duplicated and may be used regardless of whether the dual-band transceiver is operating in a first or second frequency band. Operation is, in the described embodiment, only one frequency input at a time though the invention is not limited to such operation. More specifically, a first input section is operably coupled to receive a first local oscillation input and a first frequency band signal input. A second input section is coupled to receive a second local oscillation input and a second frequency band signal input. Outputs of the first and second input sections are produced to a stabilized load with a common mode feedback block for removing a common mode feedback signal. As such, an output signal is produced having a regulated DC level and having any common mode feedback signal eliminated there from.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products