Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3387results about "Analogue-digital converters" patented technology

Delta-sigma A/D converter

A delta-sigma modulator comprising a first quantizer providing a first digital signal d0(k) representing the input signal g(t); a loop filter with input signal paths; a loop quantizer providing a corrective digital signal d1(k) representing the loop filter's output signal y(t); an array of feedback DACs D/A converting the sum d(k)=df(k)=d0(k)+d1(k) of the first and the corrective digital signals and injecting feedback signals into the loop filter.The loop filter's input node is applied the difference of the input signal g(t) and the global analog feedback signal a3(t). The global feedback signal a3(t) is delayed several clock cycles with respect to the digital output signal d(k). The delay is used to carry out mismatch-shaping and deglitching algorithms in the feedback DACs. The feedback DACs' different delays and gain coefficients are designed such that the modulator is stable. The filter's input signal paths and the compensating DAC are designed such that the gain from the input signal g(t) to the loop quantizer is small, ideally zero. Thus, the loop quantizer's resolving range can be a fraction of the first quantizer's resolving range, whereby the output signal's d(k) resolution can be much higher than the individual resolutions of d0(k) and d1(k).The delta-sigma modulator is well suited for the implementation of high-resolution wide-bandwidth A/D converters. Important applications include digital communication systems.

Residue-compensating A/D converter

An analog-to-digital converter system [50D] processing an input signal, g, which can be either a discrete-time or a continuous-time signal. A first quantizer [154] generates a first digital signal, d0(k), representing the sum of the input signal, g, and a dithering signal, y0. A digital-to-analog converter [156] generates an analog feedback signal, alpha, representing accurately the first digital signal, d0(k). The DAC [156] may be linearized by the use of mismatch-shaping techniques. A filter [158] generates the dithering signal, y0, by selectively amplifying in the signal band the residue signal, r0, defined as the difference of the input signal, g, and the analog feedback signal, alpha. Optional signal paths [166][168] are used to minimize the closed-loop signal transfer function from g to y0, which ideally will be zero. An analog compensation signal, m0, which is described by a well-controlled relationship to the residue signal, r0, is extracted from the filter [158]. Ideally, the closed-loop signal transfer function from g to m0 will be zero, or at least small in the signal band. A second quantizer [160] converts the analog compensation signal, m0, into a second digital signal, dm0(k). The two digital signals, d0(k) and dm0(k), are filtered individually and then added to form the overall output signal, dg(k). The second digital filter [164] has a low signal-band gain, which implies that the sensitivity to signal-band errors caused by the second quantizer [160] will be low. The output signal, dg(k), is a highly-accurate high-resolution representation of the input signal, g. Circuit imperfections, such as mismatch, gain errors, and nonlinearities, will cause only noise-like errors having a very low spectral power density in the signal band.The invention facilitates the implementation of uncalibrated highly-linear high-resolution wide-bandwidth A/D converters [50D], e.g., for use in digital communication systems, such as xDSL modems and other demanding consumer-market products for which low cost is of the essence.

Enhanced data converters using compression and decompression

An enhancement that reduces the digital interface rate of analog-to-digital (A/D) and digital-to-analog (D/A) converters through the use of compression and decompression is described. The present invention improves A/D converters by compressing the sampled version of the A/D converter's analog input signal in real time, thereby significantly decreasing the required bit rate of the A/D converter's digital interface. Similarly, the present invention improves D/A converters by decreasing the required bit rate of the D/A converter's digital interface. D/A converters enhanced by the present invention include a decompressor that decompresses the D/A converter's compressed digital input in real time, prior to conversion to an analog output signal. The present invention's simplicity and its ability to be implemented using multiple compression and decompression elements allow its use in A/D and D/A converters with arbitrarily high sampling rates. By selecting a desired compression ratio during lossy compression, users of the present invention can precisely control the bit rate of the A/D and D/A converter's digital interface. Users of the present invention can dynamically choose the desired balance between the quality and the bit rate of A/D and D/A converters by adjusting various compression and decompression control parameters.

Scalable audio coding/decoding method and apparatus

A scalable audio coding/decoding method and apparatus are provided. The coding method includes the steps of (a) signal-processing input audio signals and quantizing the same for each predetermined coding band; (b) coding the quantized data corresponding to the base layer within a predetermined layer size; (c) coding the quantized data corresponding to the next enhancement layer of the coded base layer and the remaining quantized data uncoded and belonging to the enhancement layer, within a predetermined layer size; and (d) sequentially performing the layer coding steps for all layers, wherein the steps (b), (c) and (d) each comprise the steps of: (i) obtaining gamut bit allocation information representing the number of bits of the quantized data corresponding to the respective subbands belonging to a layer to be coded; (ii) obtaining the number of bits allocated to the respective subbands within each subband size of the layers; (iii) generating an index representing the presence of quantized data for predetermined frequency components forming the subbands for the quantized data corresponding to the number of allocated bits; and (iv) generating bitstreams by coding the quantized data corresponding to the gamut bit allocation information, quantization step size, index and number of bits allocated to the respective subbands, by a predetermined coding method.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products